

STATE OF CALIFORNIA DEPARTMENT OF WATER RESOURCES OROVILLE DAM SAFETY COMPREHENSIVE NEEDS ASSESSMENT

Update on CNA PFM Development and Existing Conditions Assessment

Oroville Dam Safety – Ad Hoc Committee Meeting No. 5 August 9, 2019

Update on CNA PFM Development and CNA Existing Conditions Assessment

Presentation Outline

Background

- Review: Purpose of the CNA
- Risk-Informed Decision Making Approach
- Ongoing Independent Level 2 Risk Analysis
- Need for CNA Existing Conditions Assessment

Overview of CNA Existing Conditions Assessment

- PFM Development and Evaluation
- Examples of PFM Development
- Comparisons of Estimated PFM Likelihoods with L2RA Estimates
- Preliminary Results to Date

Update on CNA PFM Development and CNA Existing Conditions Assessment

Presentation Outline

Background

- Review: Purpose of the CNA
- Risk-Informed Decision Making Approach
- Ongoing Independent Level 2 Risk Analysis
- Need for CNA Existing Conditions Assessment

Overview of CNA Existing Conditions Assessment

- PFM Development and Evaluation
- Examples of PFM Development
- Comparisons of Estimated PFM Likelihoods with L2RA Estimates
- Preliminary Results to Date

<u>Review:</u> Purpose of the Comprehensive Needs Assessment

Identify and prioritize dam safety enhancements

- ✓ Document existing conditions
- ✓ Identify current **dam safety** risks
- Identify risk reduction measures to bolster safety and reliability
 - ✓ Develop prioritized list of safety and reliability needs
 - Provide set of Alternative Plans to DWR management to consider in future investment

Initial Commitment for Comprehensive Needs Assessment

State of California

Memorandum

Date: June 27, 2017

SURNAME DWR 155 (Rev 7/11)

 Sharon Tapia, Chief Division of Safety of Dams

David R. Duval, Chief Division of Operations and Maintenance om: Department of Water Resources

Subject: Comprehensive Needs Assessment, Oroville Dam (State Dam No. 1-48), Butte County

Over the past decade, a number of efforts within the Division of Operations and Maintenance (O&M) have focused on improving the reliability of existing appurtenances and other dam safety measures that contribute to the safety and ongoing integrity of OrovIIIe Dam and those appurtenant structures. Specifically, DWR has performed a number of studies to explore safe means of increasing the low level outlet (drawdown) capacity and access to cold water within the reservoir pool. The latter is a current Endangered Species Act mandate under DWR's P2100 FERC Hydranovania date and the same bination and access and a very seven date within the reservoir pool.

California Natural Resources Agence

the anticipated new License. The Division of Operations and Maintenance plans to reengage these various efforts and formally initiate a Comprehensive Needs Assessment to identify and prioritize dam safety enhancements for the future which wood dimetudare than each instancement time instancement are created by provide the priority of the safety of t

As key internal and consultant resources from Spillway Recovery design phase become available, O&M plans to pursue this Assessment with the goal of identifying priorities and appropriate solutions to enhance dam safety and operational flexibility. Some solutions might also provide secondary benefits such as operational redundancy, improve compliance with downstream flow and temperature criteria, or possible power generation opportunities. O&M respectfully requests the Division of Safety of Dams' participation in this effort to assess the needs of the Oroville complex and to discuss priorities and preferred solutions with respect to dam safety. O&M will provide DSOD with a detailed plan, scope, and schedule for this effort by December 31, 2017.

If you have any questions, please contact me at (916) 653-8583 or your staff may contact David Panec, Chief of the Division of Operations and Maintenance's Dam Safety Branch, at (916) 653-0772.

CC:	B. Soltanzadeh	T. Zasso	
	J. Ledesma	P. Whitlock	
	D. Samson	M. Hafner	
	D. Panec	J. Kuttel, DOE	
	R. Cooper	T. Engstrom, DOE	
	D. Sarkisian	J. Zumot, DOE	
	J. Lehigh	J. Royer, DOE	
	~		

The Division of Operations and Maintenance plans to reengage these various efforts and formally initiate a Comprehensive Needs Assessment to identify and prioritize dam safety enhancements for the future

June 27 and 28, 2017 DWR Letters to FERC and DSOD

Initial Outline of Comprehensive Needs Assessment

STATE OF CALIFORNIA - CALIFORNIA NATURAL RESOURCES AGENCY

DEPARTMENT OF WATER RESOURCES 1416 NINTH SIREEL, P.O. BOX 942836 SACRAMENTO, CA 94236-0001 [916] 653-5791

January 12, 2018

Mr. Frank L. Blackett, P.E. Regional Engineer Federal Energy Regulatory Commission 100 First Street, Suite 2300 San Francisco, California 94105-3084

FERC Project No. 2100 – Oroville Dam, Dam Safety Comprehensive Needs Assessment Plan and Schedule

Dear Mr. Blackett

By letter dated June 28, 2017, the Department of Water Resources (DWR) informed the Federal Energy Regulatory Commission (FERC) of its intent to initiate a Comprehensive Needs Assessment (project) to identify measures to bolster the safety and reliability of Oroville Dam and the appurtenant structures. Over the past several months, DWR has became the choroning storpdect asses

- Task 1 Alternatives Evaluation to Restore Spillway Design Capacity to Pass the Probable Maximum Flood
- Task 2 Operations Needs Assessment to Support Development of Alternative Reservoir Outflow Enhancements
- Task 3 Flood Control Outlet Enhanced Reliability
- Task 4 Alternatives Evaluation for Low-level Outlet
- Task 5 Oroville Dam Embankment Reliability and Improvements
- Task 6 Instrumentation and Monitoring for the Oroville Dam Complex

The project is scheduled to begin, lanuary 16, 2018 and conclude by December 31, 2019. A list of prioritized dam safety and operational reliability needs will be produced through completion of the project. Those needs will then be evaluated by DWR management and scheduled as projects through normal practices and procedures. As the project processes, the Project Manager may identify projects that arrivida significant public safety and nisk reduction benefits. Such projects may be submitted to DWR management for early implementation. DWR will comply with FERC and other regulatory agencies' submittal, review, and approval processes as part of the implementation.

By letter dated June 28, 2017, the Department of Water Resources (DWR) informed the Federal Energy Regulatory Commission (FERC) of its intent to initiate a Comprehensive Needs Assessment (project) to identify measures to bolster the safety and reliability of Oroville Dam and the appurtenant structures.

A list of prioritized dam safety and operational reliability needs will be produced through completion of the project. Those needs will then be evaluated by DWR management and scheduled as projects through normal practices and procedures.

January 12, 2018 DWR Letter to FERC

Final Product of Comprehensive Needs Assessment

A report documenting an Existing Conditions Assessment that identifies current Dam Safety risks at the Oroville Dam complex, opportunities to reduce risk, and a set of Alternative Plans that DWR could consider for future implementation for risk reduction.

Update on CNA PFM Development and CNA Existing Conditions Assessment

Presentation Outline

Background

- Review: Purpose of the CNA
- Risk-Informed Decision Making Approach
- Ongoing Independent Level 2 Risk Analysis
- Need for CNA Existing Conditions Assessment

Overview of CNA Existing Conditions Assessment

- PFM Development and Evaluation
- Examples of PFM Development
- Comparisons of Estimated PFM Likelihoods with L2RA Estimates
- Preliminary Results to Date

Comprehensive Needs Assessment will employ Risk-Informed Decision Making (RIDM) Processes

The RIDM approach is the process of making safety decisions by evaluating if existing risks are tolerable and present risk measures are adequate, and if not, whether alternative risk reduction measures are justified.

(FEMA, 2015)

Risk = product of the likelihood of an adverse event and the consequences of that event

(U.S. Bureau of Reclamation, 2003)

Tolerable Levels of Risk for Different Industries/ Facilities

from T. William Lambe and W. Allen Marr

RIDM Process – Step 1 Assess and Compare Risks: Potential Failure Mode Analyses

- Identify possible scenarios (Potential Failure Modes) that would lead to adverse impacts
- ✓ Estimate the likelihood of each scenario occurring
- ✓ Estimate the consequences of each scenario
- ✓ Estimate Risk = Likelihood x Consequence
- Compare risk across scenarios to help prioritize future risk reduction measures

Use of Potential Failure Modes (PFMs) in Dam Safety Risk Evaluations

Potential Failure Mode Analyses (PFMA):

 \checkmark Required by FERC since December 2002

✓ To be conducted jointly by Owner, Independent Consultant, and FERC staff

from Chapter 14, *Dam Safety Monitoring Program*, Revision 3, May 2017, FERC

Potential Failure Mode (PFM)

The chain of events leading to unsatisfactory performance of the dam or a portion thereof. The dam does not have to completely fail in the sense of a complete release of the impounded water. Failure Modes that result in unintended releases of water, such as the Folsom Dam radial gate failure, are also considered.

Potential Failure Mode Analysis (PFMA)

The process utilized to determine the Potential Failure Modes pertinent to the dam under investigation.

Use of Potential Failure Modes (PFMs) in Dam Safety Risk Evaluations

Potential Failure Mode Analyses (PFMA):

Consideration and Development of PFMs – Example: Progression of Internal Erosion PFM

- Reservoir at or above threshold level Initiation Erosion starts Continuation Unfiltered or inadequately filtered exit exists Progression Continuous stable roof and/or sidewalls Progression Constriction or upstream zone fails to limit flows Progression No self-healing by upstream zone Unsuccessful detection and intervention Dam breaches (uncontrolled release of reservoir)

from "Best Practices in Dam and Levee Safety Risk Analysis," United States Bureau of Reclamation and Army Corps of Engineers

Event Tree/Nodal Approach for Likelihood Estimates

Failure Likelihood Descriptors												
Failure Likelihood Descriptors	Annual Failure Likelihood	Evidence										
Certain	More frequent (greater) than 1/10	There is direct evidence or substantial indirect evidence to suggest it certain to nearly certain that failure is eminent or extremely likely in the next few years.										
Extreme	1/10 to 1/100	There is direct evidence or substantial indirect evidence to suggest that failure has initiated or is very likely to occur during the life of the structure.										
Very High	1/100 to 1/1,000	There is direct evidence or substantial indirect evidence to suggest that failure has initiated or is likely to occur.										
High	1/1,000 to 1/10,000	The fundamental condition or defect is known to exist; indirect evidence suggests it is plausible; and key evidence is weighted more heavily toward "more likely" than "less likely."										
Moderate	1/10,000 to 1/100,000	The fundamental condition or defect is known to exist; indirect evidence suggests it is plausible; and key evidence is weighted more heavily toward "less likely" than "more likely."										
Low	1/100,000 to 1/1,000,000	The possibility cannot be ruled out, the fundamental condition or defect is postulated. Evidence indicates it is very unlikely.										
Very Low	1/1,000,000 to 10,000,000	The possibility cannot be ruled out, but there is no compelling evidence to suggest it has occurred or that a condition or flaw exists that could lead to initiation.										
Remote	More remote (less) than 1/10,000,000	Several events must occur concurrently or in series to cause failure, and most, if not all, have negligible likelihood such that the failure likelihood is negligible.										

Qualitative Approach to Estimate Failure Likelihood using Descriptors

from FERC, 2018

Example of Periodic (Level 2) Risk Analysis Matrix for Societal Incremental Life Safety

from FERC Risk-Informed Decision Making for Dam Safety, Periodic (Level 2) Risk Analysis Procedures, DRAFT, Version 1.1, June 2018

Example Use of Periodic (Level 2) Risk Analysis Matrix for Evaluating Risk Reduction Measures

Adapted from FERC Risk-Informed Decision Making for Dam Safety, Periodic (Level 2) Risk Analysis Procedures, DRAFT, Version 1.1, June 2018

Update on CNA PFM Development and CNA Existing Conditions Assessment

Presentation Outline

Background

- Review: Purpose of the CNA
- Risk-Informed Decision Making Approach
- Ongoing Independent Level 2 Risk Analysis
- Need for CNA Existing Conditions Assessment

Overview of CNA Existing Conditions Assessment

- PFM Development and Evaluation
- Examples of PFM Development
- Comparisons of Estimated PFM Likelihoods with L2RA Estimates
- Preliminary Results to Date

5TH CONGRESS

2d Session

Congressional Mandate for Level 2 Risk Analysis as part of Part12D Safety Review of Oroville Dam

ENERGY AND WATER DEVELOPMENT AND RELATED AGENCIES FOR THE FISCAL YEAR ENDING SEPTEMBER 30, 2019, AND FOR OTHER PURPOSES

HOUSE OF REPRESENTATIVES

REPORT

115 - 929

CONFERENCE REPORT

TO ACCOMPANY

H.R. 5895

SEPTEMBER 10, 2018 .- Ordered to be printed

HR 5895 CONFERENCE REPORT – September 20, 2018

FEDERAL ENERGY REGULATORY COMMISSION

SALARIES AND EXPENSES

The agreement provides \$369,900,000 for the Federal Energy Regulatory Commission (FERC). Revenues for FERC are set to an amount equal to the budget authority, resulting in a net appropriation of \$0.

FERC shall require the licensee of Oroville Dam to request the United States Society on Dams to nominate independent consultants to prepare a level 2 risk analysis, consistent with the Commission's guidelines, for use in conducting the next Part 12 safety review of Oroville Dam, currently scheduled for 2019. FERC shall ensure the independence of the nominated consultants from the licensee.

Update on Level 2 Risk Analysis and CNA Existing Conditions Assessment

Table 1 - Categories of Identified Potential Failure Modes

- Category I <u>Highlighted Potential Failure Modes</u> Those potential failure modes of greatest significance considering need for awareness, potential for occurrence, magnitude of consequence and likelihood of adverse response (physical possibility is evident, fundamental flaw or weakness is identified and conditions and events leading to failure seemed reasonable and credible) are highlighted.
- Category II <u>Potential Failure Modes Considered but not Highlighted</u> These are judged to be of lesser significance and likelihood. Note that even though these potential failure modes are considered less significant than Category I they are all also described and included with reasons for and against the occurrence of the potential failure mode. The reason for the lesser significance is noted and summarized in the documentation report or notes.
- Category III More <u>Information or Analyses are needed in order to classify</u> these potential failure modes to some degree lacked information to allow a confident judgment of significance and thus a dam safety investigative action or analyses can be recommended. Because action is required before resolution the need for this action may also be highlighted.
- Category IV <u>Potential Failure Mode Ruled Out</u> Potential failure modes may be ruled out because the physical possibility does not exist, information came to light which eliminated the concern that had generated the development of the potential failure mode, or the potential failure mode is clearly so remote a possibility as to be non-credible or not reasonable to postulate.

from Section I-4 Semi-Quantitative Risk Analysis, USBR/USACE Best Practices (04-13-15)

Organization, Leadership, and Participants:

Independent Team Participants include experts from 9 different consulting firms and agencies include:

\checkmark	Robin Fell	(Geotechnical)	University of New South Wales, Australia
\checkmark	David Paul	(Geotechnical)	HDR (formerly USACE Risk Management Center)
\checkmark	Mark Stanley	(Geotechnical)	HDR
\checkmark	Dan Osmun	(Geotechnical)	HDR (formerly USBR)
\checkmark	Elena Sossenkina	(Geotechnical)	HDR
\checkmark	Keith Kelson	(Geology/Seismology)	USACE Risk Management Center
\checkmark	Chris Hitchcock	(Geology/Seismology)	Lettis Consultants International
\checkmark	Dina Hunt	(Geology/Seismology)	Gannett Fleming
\checkmark	Bill Cole	(Geology)	Sage Engineers
\checkmark	Alex Bjelica	(Structural)	Black & Veatch
\checkmark	Keith Moen	(Structural)	HDR
\checkmark	Phoebe Percell	(Structural)	HDR (formerly USBR)
\checkmark	Todd Schellhase	(Structural)	Black & Veatch
\checkmark	Tom Hepler	(Structural)	Schnabel Engineering (formerly USBR)
\checkmark	Nathan Pringle	(Hydrology/Hydraulics)	HDR
\checkmark	Paul Rischer	(Hydrology/Consequences)	HDR (formerly USACE Risk Management Center)
\checkmark	Jason Needham	(Consequences)	USACE Risk Management Center
\checkmark	Joe Goldstein	(Consequences)	Geosyntec (formerly USACE)

Organization, Leadership, and Participants:

DWR Subject Matter Experts/Contributors provide design, construction, and performance information – participate in discussions and initial rankings of risk, but not in final Independent Evaluation – <u>include</u>:

\checkmark	Leslie Harder	(Geotechnical)	HDR (formerly DWR)	
\checkmark	Mitch Tyler	(Geotechnical)	DWR – DOE	
\checkmark	Ryan Abernathy	(Civil/Geotechnical)	DWR - DOE	
\checkmark	Daniel Cimini	(Civil/Geotechnical)	DWR - DOE	
\checkmark	Holly Nichols	(Geology)	DWR – Project Geology	
\checkmark	Nick Hightower	(Geology)	DWR – Project Geology	
\checkmark	Sean Dunbar	(Geology)	DWR – Project Geology	
\checkmark	Art Carleton	(Structural)	DWR – DOE	
\checkmark	Cody Kimball	(Structural)	DWR – DOE	
\checkmark	Kenny Dosanjh	(Structural)	HDR (on behalf of DWR)	
\checkmark	Dustin Jones	(Hydrology/Hydraulics)	DWR – Project Operations	CNA Task 2 Lead
\checkmark	David Panec	(Performance/Surveillance)	DWR – Dam Safety Branch	CNA Task 6 Lead
\checkmark	Paul Dunlap	(Performance/Surveillance)	DWR – Dam Safety Branch	
\checkmark	Gina House	(Operations)	DWR – Oroville Field Division Op	erations
\checkmark	Clint Womack	(Operations)	DWR – Oroville Field Division Op	erations
\checkmark	Jeff House	(Operations)	DWR – Oroville Field Division Pla	nt Maintenance

Organization, Leadership, and Participants:

- Oversight provided by FERC, USACE, and DSOD staff, as well as by Eric Halpin, former Chief of Levee and Dam Safety for United States Army Corps of Engineers participate in discussions, but do not vote on risk determinations <u>include</u>:
 - ✓ Eric Halpin Halpin Consulting (formerly Chief of Levee and Dam Safety, USACE)
 - ✓ Steven Townsley USACE Risk Management Center
 - ✓ Frank Blackett FERC Regional Engineer
 - ✓ Doug Boyer FERC National Risk Analysis Lead
 - ✓ Vinh Tran
 FERC
 - ✓ Dustin Smith FERC
 - ✓ Eric Kennedy FERC
 - ✓ Daniel Meyersohn DSOD
 - ✓ Bill Pennington DSOD
 - ✓ Wallace Lam DSOD
 - ✓ Robert Jaeger DSOD
 - ✓ Harpreet Hansra DSOD

Organization, Leadership, and Participants:

- 10th Part 12D Independent Consultant participate in discussions, but do not vote on risk determinations:
 - ✓ Dr. Lelio Mejia Geosyntec Consultants also IRB Member
 - ✓ Dr. David Bowles RAC Engineers and Economists
 - ✓ Drew Kennedy Sage Engineers

Organization, Leadership, and Participants:

- Observers include CNA Task Team Leads and IRB members generally do not participate in discussions or vote on risk determinations - <u>include</u>:
 - ✓ Sergio Escobar DWR CNA Project Manager
 - ✓ David Ford HDR CNA Project Integration Team
 - ✓ Craig Hall GEI CNA Task 1 Lead
 - ✓ Bob Filgas HDR CNA Task 3 Lead
 - ✓ Chris Krivanec HDR CNA Task 4 Lead
 - ✓ Bailey Johnson HDR CNA Task 4 Asst. Lead
 - ✓ Tim Wehling
 - ✓ Don Walker
- DWR CNA Task 5 Lead
- DWR O&M Asset Management

✓ Daniel Wade IRB Member

PFM No.	No.	Dam	PFM Description	Loading	Component	Mechanism	CNA Task Team	PFM Group (A, B, C, D)	Previous Category	Submitter
1		Oroville Dam	CBND: founda materia 171 Pre-Workshop	PFMs	Cons	idered	d 5			
2		Oroville Dam	CBND: grout c founda in Previous PFMA	Work	kshop	s and	5			
3		Oroville Dam	Brainstorming Ide	as Si	ubmitte	ed by	5			
4		Oroville Dam	earthque Loval 2 Worksho	n Pa	rticina	inte	5			
5		Oroville Dam	CBND: LCVCI Z VVUINSIIN shears in the dam foundation during seisine event.	ріа			5			
6		Oroville Dam	CRND: Seismic damage to site access roads and bridges	Farthquake	Embankment	Dam Access	5			
7		Orovi 🗸 3	5 PFMs (1 - 35) for Embankr	nents						
8		Orovi 🗸 1	9 PFMs (36 – 52, 116, 117) E	merge	ncy Sp	oillway				P. Risher
9		Orovi 🗸 6	4 PFMs (53 – 115, 118) for F	CO						C. Womack
10	H-3	Orovi 🗸 <u>5</u>	<u> 3 PFMs (119 – 171) for Hyatt</u>	t, Pale	rmo, ar	nd RVO	<u>S outl</u>	<u>ets</u>	2	
11		Orovi 1	71 PFMs Total							
12		Oroville Dam	Internal erosion of fines from seepage barrier exiting into transition zone 2a due to imperfect filter compatibility.	Normal	Embankment	Internal Erosion	5			D. Panec
13		Oroville Dam	Canyon Dam (Lake Almanor) upstream of Oroville Dam in Feather River Basin fails during normal loads, which leads to overtopping of Oroville Dam (variation of #4).	Normal	Embankment	Overtopping	5	A		T. Hepler
14		Oroville Dam	Toe Weir drain pipe becomes clogged, dam seepage cannot exit causing seepage to exit through dam fill materials	Normal	Embankment	Slope Instability	5			C. Womack

PFM		_					CNA Task	PFM Group	Previous	Cubasittan					
INO.	No.	Dam	CBND:	Loading	Component	Mechanism	Team	(A, B, C, D)	Category	Submitter					
1		Oroville Dam	founda materia 171 Pre-Workshop	PFMs	Cons	iderec	5								
2		Oroville Dam	CBND: grout c in Previous PFMA	in Previous PFMA Workshops and 5											
3		Oroville Dam	Brainstorming Ide												
4		Oroville Dam	CBND: earthque Lovol 2 Morkeh	n Da	rtiaina	nto	5								
5		Oroville Dam		рга	nicipa	1115	5								
6		Oroville Dam	CRND: Seismic damage to site access roads and bridges	Farthquake	Embankment	Dam Access	5								
7		Orovi 🗸 3	5 PFMs (1 - 35) for Embankr	nents				-							
8		Orovi 🗸 1	9 PFMs (36 – 52, 116, 117) E	merge	ncy Sp	illway				P. Risher					
9		Orovi 🗸 6	4 PFMs (53 – 115, 118) for F	00						C. Womack					
10	H-3	Orovi 🗸 <u>5</u>	<u> 3 PFMs (119 – 171) for Hyatt</u>	, Pale	rmo, ar	d RVO	<u>S outl</u>	<u>ets</u>	2						
11		Orovi 1	71 PFMs Total												
12		Or	Internal erosion of fines from seepage barrier exiting into			Internal	_			D. Panec					
13		or SO	me PFMs – Previously Considered	d But No	ot Develo	oped (CB	ND)			T. Hepler					
14		or Ad	ditional PFMs added during Level	2 Risk	Analysis	Worksh	op Ses	sions		C. Womack					

Assigning Likelihood/Annual Probability of Failure for PFMs in Oroville Level 2 Risk Analysis

DO NOT N	ANE ENTRIES	IN DICK MAATDIX												
APF	Failure Likelihood	- and increments	Lite- Loss vecti	evel 2 Risk Analy	sis Matrix - Brea	ch			APF Vector					
	Category													
10 ⁻³ - 10 ⁻²	Very High								AFF					
10 ⁻⁴ - 10 ⁻³	High													
10 ⁻⁵ - 10 ⁻⁴	Moderate													
10 ⁻⁶ - 10 ⁻⁵	Low			0.09	0.01				0.10					
10 ⁻⁷ - 10 ⁻⁶	Very Low			0.72	0.08				0.80					
< 10 ⁻⁷	Remote			0.09	0.01				0.10					
Consequ	ence Level	Level 1	Level 2	Level 3	Level 4	Level 5								
Incremen	tal Life Loss nce Category	0 - 1	1 - 10	10 - 100	100 - 1,000	1,000 - 10,000	> 10,000	a)	1.00					
Incremen	tal Life Loss			0.90	0.10			ь)	1.00					
If you physically make ent	judge this PFI possible ente ries in APF ar Life- Loss Vec	M to be not er 1 (and do not ind Incremental itors):	0.00	a) - c) must physical	c)	1.00								

Nodal Likelihood Descriptors:	Associated Probability	
Descriptor	0.999	
Virtually Certain	0.99	
Very Likely	0.9	
Likely		
Neutral		
Unlikely	0.01	
Very Unlikely	6.0	
Taken from Bureau of Reclamation an Levee Safety	d U.S. Army Corps of Engineers, "Best Practices in Particulation and the Risk Analysis" workshop materials.	

Update on CNA PFM Development and CNA Existing Conditions Assessment

Presentation Outline

Background

- Review: Purpose of the CNA
- Risk-Informed Decision Making Approach
- Ongoing Independent Level 2 Risk Analysis
- Need for CNA Existing Conditions Assessment

Overview of CNA Existing Conditions Assessment

- PFM Development and Evaluation
- Examples of PFM Development
- Comparisons of Estimated PFM Likelihoods with L2RA Estimates
- Preliminary Results to Date

Deferred Level 2 RA Schedule no longer meets CNA Schedule needs – CNA Task Teams need to understand higher risks sooner in order to identify risk reduction opportunities and potential risk reduction measures

Update on Level 2 Risk Analysis

Original Schedule

Revised Schedule

Dates	Workshop Subject	Dates	Workshop Subject Matter
	Matter	January 22 – 25	Parish Camp, Bidwell Bar Canyon, Main Embankment
January 22 – 25	Parish Camp, Bidwell Bar Canyon, Main Embankment	January 28 – February 1	Main Embankment
January 28 –		February 27 – March 7	Hyatt Intake, FCO Headworks, Hyatt PP, Palermo Tunnel, and RVOS
February 1	Main Embankment	March 18 – 22	Embankments – Week 3
February 27 –	Hyatt Intake, FCO	May 8 – 10	Structural – Week 3
March 7	Palermo Tunnel, and RVOS	June 24 - 28	Systems and Human Factors
	Post-Construction FCO	July 8 - 12	Non-Life Loss
March 18 – 22	Chute and Emergency Spillway	July 29 – August 2	Spillways

	2017				2018					2019						2020															
	JUN	JUL	AUG	SEP	OCT NOV	DEC J	AN FEB M	AR APR	MAY J	UN JUL	AUG	SEP OCT	NOV DE	C JAN	FEB MAR	RAPRN	IAY JU	N JUL	AUG S	EP OC	r nov	DEC	JAN FE	BMA	R APF	R MAY	JUN J	IUL AU	G SEP	OCT N	IOV DEC
Project Commitment (June 28, 2017)	•																														
Project Conceptualization					9/15 – 11/30										Сс	mp	reł	nen	siv	ve N	lee	ds	As	SE	ess	smo	ent	: W	ork	bla	n
Project Scoping						12/1 – 1/1	5									1-		F			ГС	0.01	ton	ah	0 K	ົງດ	10			1	
Draft Project Management Plans							1/15 – 4/1							ļĻ				L			1 3	ep	len			20	10	1			:
Contracting and Staffing							1/1 -	- 6/1																							
IRB Appointments									1 mo.																						
Integrated Project Approach Development									3/1 –	9/15																					
Project Management Plan Adjustments											7/1 – 10/	/15																			
1.1 Identify Issues											6/	/15 – 12/31																			
1.2 Identify Assumptions and Constraints											6/	/15 – 12/31																			
1.3 Identify Evaluation Criteria										3/1 – 10/31																					
1.4 Refine Issues Based on New Information														1/	1 – 3/31																
2.1 Define Baseline and Future Without Plan Conditions															1/15 – 3/31																
R Part 12D PFMA/SQRA														1/	22 – 3/22																
2.2 Identify Measures to Address Issues																3/31	- 6/30														
2.3 Evaluate Measures Based on Evaluation Criteria																		1 mo.													
2.4 Refine Measures Based on Evaluation Outcomes																			1 mo.												
2.5 Screen and Select Measures for Next- Step Formulation																			1	mo.											
3.1 Formulate Alternative Plans																				1 mc											
4.1 Evaluate Alternative Plans with CNA SQRA																					1 mo.										
4.2 Refine Plans																						1 mo.									
5.1 Compare and Rank Alternative Plans																							1/1 – 2/2	9							
6.1 Select Portfolio of Recommended Plans																								1 m	0.						
Draft Report																						1:	2/1 – 3/15								
Final Report																									3/15 -	- 5/31					

- Deferred Level 2 RA Schedule no longer meets CNA Schedule needs CNA Task Teams need to understand higher risks sooner in order to identify risk reduction opportunities and potential risk reduction measures
- Level 2 RA is largely focused on Ultimate Failure conditions for each PFM with an uncontrolled release of the reservoir – e.g. dam breach or loss of FCO Headworks structure – CNA ECA looks at multiple condition states for each PFM

- Deferred Level 2 RA Schedule no longer meets CNA Schedule needs CNA Task Teams need to understand higher risks sooner in order to identify risk reduction opportunities and potential risk reduction measures
- Level 2 RA is largely focused on Ultimate Failure conditions for each PFM with an uncontrolled release of the reservoir – e.g. dam breach or loss of FCO Headworks structure – CNA ECA looks at multiple condition states for each PFM
- Level 2 RA largely focused on Life Loss, whereas CNA ECA focuses on 5 criteria of DWR Asset Management Risk Matrix

- Deferred Level 2 RA Schedule no longer meets CNA Schedule needs CNA Task Teams need to understand higher risks sooner in order to identify risk reduction opportunities and potential risk reduction measures
- Level 2 RA is largely focused on Ultimate Failure conditions for each PFM with an uncontrolled release of the reservoir – e.g. dam breach or loss of FCO Headworks structure – CNA ECA looks at multiple condition states for each PFM
- Level 2 RA largely focused on Life Loss, whereas CNA ECA focuses on 5 criteria of DWR Asset Management Risk Matrix
- Level 2 RA will not consider risk reduction opportunities or risk reduction measures – CNA will – so having the same risk estimators will help ensure consistency
How CNA Existing Conditions Assessment

Benefits from Level 2 Risk Assessment

- ✓ CNA ECA is intended as a <u>Preliminary</u> Assessment of Existing Conditions to avoid further delays in CNA Project Schedule
- ✓ Will make use of <u>available</u> Level 2 RA results and products
- ✓ Will utilize <u>additional</u> Level 2 RA results as they become available and circle back to Level 2 RA results when completed
- At the end of both processes, results are expected to be consistent with each other, particularly on PFMs and Life Loss Consequences

Update on CNA PFM Development and CNA Existing Conditions Assessment

Presentation Outline

Background

- Review: Purpose of the CNA
- Risk-Informed Decision Making Approach
- Ongoing Independent Level 2 Risk Analysis
- Need for CNA Existing Conditions Assessment

Overview of CNA Existing Conditions Assessment

- PFM Development and Evaluation
- Examples of PFM Development
- Comparisons of Estimated PFM Likelihoods with L2RA Estimates
- Preliminary Results to Date

CNA Existing Conditions Assessment

CNA Plan Formulation Principles

The CNA Plan Formulation Principles derived <u>directly</u> from DWR Asset Management Matrix

			n or opera	aons anu i	Hantenan									
Likelihood			D	WR Division of O	perations & Maint	enance Risk Mat	ix							
DWR Division of Operations and Maintenance Risk Matrix Likelhood DWR Division of Operations & Maintenance Risk Matrix Likely to occur 01 times ayar 7 7 14 21 28 35 42 Likely to occur within typer 6 6 12 18 24 30 36 Likely to occur within typer 5 5.5 11 16.5 22 27.5 35 3 Likely to occur within typer 5 5 10 15 20 25 30 3 Likely to occur within typer 4 4 8 12 16 20 24 3 Likely to occur within tx00 years 3 3 6 9 12 15 18 Likely to occur within tx0,000 years 2 2 4 6 8 10 12 Likely to occur within tx0,000 years 1 1 2 3 4 5 6 Likely to occur within tx0,000 years 2 2						49								
Likely to occur within 1 year	6	6	12	18	24	30	36	42						
Likely to occur within 3 years	5.5	5.5	11	16.5	22	27.5	35	38.5						
Likely to occur within 10 years	5	5	10	15	20	25	30	35						
Likely to occur within 30 years	4.5	4.5	9	13.5	18	22.5	26	31.5						
Likely to occur within 100 years	4	4	8	12	16	20	24	28						
Likely to occur within 1000 years	3	3	6	9	12	15	18	21						
Likely to occur within 2 2 2 4 6 8 10 12 14														
Likely to occur within 1 1 1 2 3 4 5 6 7														
Consequence														
		1	2	3	4	5	6	7						
Public Safety		No injury No damage to public or private property	Near miss Or minor property damage	Minor injuries not requiring medical attention Or moderate property damage	Single injury requiring medical attention Or moderate property damage	Multiple injuries or permanent disability Or major property damage	Fatality Or major property damage over large area	Multiple Fatalities						
			Near miss or	Single injury	over large area Multiple injuries									
Personnel Safety		No injury	minor injuries not requiring medical attention	requiring medical attention	requiring medical attention or permanent disability	Fatality	Multiple Fatalities							
Personnel Safety Compliance*		No injury No violation	minor injuries not requiring medical attention Minor restrictions or increased oversight.	requiring medical attention Violation and fines	requiring medical attention or permanent disability Violation(s), fines, restricted use and prosecution	Fatality Sanctions. Lose rights to operate a facility	Multiple Fatalities							
Personnel Safety Compliance* Flexibility and Reliability – Water Delivery*		No injury No violation No impact	minor injuries not requiring medical attention Minor restrictions or increased oversight. Unable to meet delivery schedule in a Field Division	requiring medical attention Violation and fines Unable to meet water delivery schedules in multiple Field Divisions	requiring medical attention or permanent disability Violation(s), fines, restricted use and prosecution Inability to meet Table A Allocation Cascading effect results in damage to other facilities	Fatality Sanctions. Lose rights to operate a facility Inability to meet life and safety flows Cascading effect results in uncontrolled release of water	Multiple Fatalities							
Personnel Safety Compliance* Flexibility and Reliability – Water Delivery* Flexibility and Reliability – Other Purposes*	SWP	No injury No violation No impact	minor injuries not requiring medical attention Minor restrictions or increased oversight. Unable to meet delivery schedule in a Field Division Minor impact to recreation and fish & wildlife	requiring medical attention Violation and fines unable to meet water delivery schedules in multiple Field Divisions Minor impact to recreation and fish & wildlife	requiring medical attention or permanent disability Violation(s), fines, restricted use and prosecution Inability to meet Table A Allocation Cascading effect results in damage to other facilities Minor impact to flood control Major impact to power generation	Fatality Sanctions. Lose rights to operate a facility. Inability to meet life and safety flows Cascading effect results in uncontrolled release of water Major impact to flood control	Multiple Fatalities							
Personnel Safety Compliance* Flexibility and Reliability – Water Delivery* Flexibility and Reliability – Other Purposes* Reputation*	, swp	No injury No violation No impact No impact Questions raised by elected local officials	minor injuries not requiring medical attention Minor restrictions overnight. Unable to meet delivery schedule in a Field Division Minor impact to recreation and fish & wildlife Questions by State or Federal officials	requiring medical attention Violation and fines Unable to meet water delivery schedules in multiple Field Divisions Minor impact to power generation Major impact to power generation and fish & wildlife Local media coverage Correspondence from State or Federal officials	requiring medical attention or permanent disability instances from and prosecution inability to meet Table A Allocation Cascading effect results in damage to other facilities Minor impact to power generation State media coverage Legislative bearing	Fatality Sanctions. Lose rights to operate a facility to meet life and safety flows Cascading effect release of water Major impact to flood control National media coverage Legislative action	Multiple Fatalities							

Area Control Cornel -

DWR Division of Operations and Maintenance Risk Matrix

Likelihood			C	WR Division of O	perations & Maint	enance F	Risk	Matrix						
Likely to occur 10 times a year	7	7	14	21	28	3	85	42	49					
Likely to occur within 1 year	6	6	12	18	24	3	30	36	42					
Likely to occur within 3 years	5.5	5.5	11	16.5	22	27	7.5	35	38.5					
Likely to occur within 10 years	5	5	10	15	20	2	25	30	35					
Likely to occur within 30 years	kely to occur within 4.5 4.5 9 13.5 years 13.5 13.5 13.5 13.5						2.5	26	31.5	Lž	RA R		atrix	
Likely to occur within 100 years	4	4	8	12	16				c	Oroville Level 2 Risk Analysis Matrix				
Likely to occur within 1000 years	3	3	6	9	12			Very High						10.3 10.2
Likely to occur within 10,000 years	2	2	4	6	8			ස් ස						104 103
Likely to occur within 100,000 years	1	1	2	3	4	od Category	u category	Moderate						4-04 B-04
			-	-	Consequence	keliho.								-
Consequence Cate	equence Category 1 2 3 4 Insignificant Minor Moderate High							Low						10.6 40.
Merging	rging:							Very Low						40. ⁷ 40.6
anagem	gement Risk Matrix							Remote						- 447

DWR AM Category 6

FERC Level 1

0-1

DWR AM Category

FERC Level 2

1-10

DWR Asset Management Risk Ma with FERC Level 2 Risk Matrix

Incremental Life Loss Consequence Category

FERC Level 4

100-1000

FERC Level 5

1,000 - 10,000

> 10,000

FERC Level 3

10-100

Likelihood		с	omprehensiv	ve Needs As	sessment-	Extension	of DWR Div	ision of Ope	rations & M	aintenance	Risk Matrix	
Annuai Probability		1 Insignificant	2 Minor	3 Moderate	4 High	5 Major	6 Extreme	7 Catastrophic	8	9	10	11
1	10	10	20	30	40	50	60	70	80	90	100	110
1	9	9	18	27	36	45	54	63	72	81	90	99
3 x10 ⁻¹ – 1	8.5	8.5	17	25.5	34	42.5	51	59.5	68	76.5	85	93.5
10 ⁻¹ – 3 x10 ⁻¹	8	8	16	24	32	40	48	56	64	72	80	88
3 x10 ⁻² – 10 ⁻¹	7.5	7.5	15	22.5	30	37.5	45	52.5	60	67.5	75	82.5
10 ⁻² – 3 x10 ⁻²	7	7	14	21	28	35	42	49	56	63	70	77
10 ⁻³ - 10 ⁻²	6	6	12	18	24	30	36	42	48	54	60	66
10 ⁻⁴ - 10 ⁻³	5	5	10	15	20	25	30	35	40	45	50	55
10 ⁻⁵ - 10 ⁻⁴	4	4	8	12	16	20	24	28	32	36	40	44
10 ⁻⁶ - 10 ⁻⁵	3	3	6	9	12	15	18	21	24	27	30	33
10 ⁻⁷ - 10 ⁻⁶	2	2	4	6	8	10	12	14	16	18	20	22
< 10 ⁻⁷	1	1	2	3	4	5	6	7	8	9	10	11
Consequenc						Co	onsequence					
Category		1	2	3	4	5	6	7	8	9	10	11
eatogoly		Insignificant	Minor	Moderate	High	Major	Extreme	Catastrophic				
Public Safet (includingPerson Safety)	y nnel	No injury	Near miss, minor injuries	Minor injuries	Single injury	Multiple injuries, permanent disability	Fatality 0 – 1 fatalities	Multiple Fatalities 1 -10 fatalities	10 – 100 fatalities	100 – 1,000 fatalities	1,000 – 10,000 fatalities	> 10,000 fatalities
Financial Impacts (Direct and Indire	ect)	< \$100k	\$100k - \$1M	\$1M - \$10M	\$10M- \$100M	\$100M - \$1B	\$1B - \$10B	\$10B - \$100B	\$100B - \$250B	\$250B - \$500B	\$500B - \$1T	> \$1T

Likelihood		с	omprehensi	ve Needs As	sessment-	Extension	of DWR Div	ision of Ope	rations & M	aintenance	Risk Matrix	
Probability		1 Insignificant	2 Minor	3 Moderate	4 High	5 Maior	6 Extreme	7 Catastrophic	8	9	10	11
1	10	10	20	30	40	50	60	70	80	90	100	110
1	9	9	18	27	36	45	54	63	72	81	90	99
3 x10 ⁻¹ – 1	8.5	8.5	17	25.5	34	42.5	51	59.5	68	76.5	85	93.5
10 ⁻¹ – 3 x10 ⁻¹	8	8	16	24	32	40	48	56	64	72	80	88
3 x10 ⁻² – 10 ⁻¹	7.5	7.5	15	22.5	30	37.5	45	52.5	60	67.5	75	82.5
10 ⁻² – 3 x10 ⁻²	7	7	14	21	28	35	42	49	56	63	70	77
10 ⁻³ - 10 ⁻²	6	6	12	18	24	30	36	42	48	54	60	66
10 ⁻⁴ - 10 ⁻³	5	5	10	15	20	25	30	35	40	45	50	55
10 ⁻⁵ - 10 ⁻⁴	4	4	8	12	16	20	24	28	32	36	40	44
10 ⁻⁶ - 10 ⁻⁵	3	3	6		12		18	21	24	27	30	33
10 ⁻⁷ - 10 ⁻⁶	2	2	4 C	riginal DW	/R AM Risk	Matrix	12	14	16	18	20	22
< 10 ⁻⁷	1	1	2	3	4	5	6	7	8	9	10	11
Consequenc						Co	onsequence					
Category	,e	1	2	3	4	5	6	7	8	9	10	11
Category		Insignificant	Minor	Moderate	High	Major	Extreme	Catastrophic				
Public Safet (includingPerson Safety)	y nnel	No injury	Near miss, minor injuries	Minor injuries	Single injury	Multiple injuries, permanent disability	Fatality 0 – 1 fatalities	Multiple Fatalities 1 -10 fatalities	10 – 100 fatalities	100 – 1,000 fatalities	1,000 – 10,000 fatalities	> 10,000 fatalities
Financial Impacts (Direct and Indire	ect)	< \$100k	\$100k - \$1M	\$1M - \$10M	\$10M- \$100M	\$100M - \$1B	\$1B - \$10B	\$10B - \$100B	\$100B - \$250B	\$250B - \$500B	\$500B - \$1T	> \$1T

Likelihood Annual		с	omprehensiv	ve Needs As	sessment-	Extension	of DWR Div	ision of Ope	rations & M	aintenance F	Risk Matrix	
Annuai Probability		1 Insignificant	2 <u>Min</u> or	3 Moderate	4 High	5 Maior	6 Extreme	7 <u>Cat</u> a <u>strophi</u> c	8	9	10	11
1	10	10	20	30	40	50	60	70	80	90	100	110
1	9	9	18	27	36	45	54	63	72	81	90	99
3 x10 ⁻¹ – 1	8.5	8.5	17	25.5	34	42.5	51	59.5	68	76.5	85	93.5
10 ⁻¹ – 3 x10 ⁻¹	8	8	16	24	32	40	48	56	64	72	80	88
3 x10 ⁻² – 10 ⁻¹	7.5	7.5	15	22.5	30	37.5	45	52.5	I 2RA	Risk Matrix	75	82.5
10 ⁻² – 3 x10 ⁻²	7	7	14	21	28	35	42	49			70	77
10 ⁻³ - 10 ⁻²	6	6	12	18	24	30	36	42	48	54	60	66
10 ⁻⁴ - 10 ⁻³	5	5	10	15	20	25	30	35	40	45	50	55
10 ⁻⁵ - 10 ⁻⁴	4	4	8	12	16	20	24	28	32	36	40	44
10 ⁻⁶ - 10 ⁻⁵	3	3	6	9	12	15	18	21	24	27	30	33
10 ⁻⁷ - 10 ⁻⁶	2	2	4	6	8	10	12	14	16	18	20	22
< 10 ⁻⁷	1	1	2	3	4	5	6	7	8	9	10	11
Consequenc						Co	onsequence					
Category		1	2	3	4	5	6	7	8	9	10	11
Cutogoly		Insignificant	Minor	Moderate	High	Major	Extreme	Catastrophic				
Public Safet (includingPerso Safety)	y nnel	No injury	Near miss, minor injuries	Minor injuries	Single injury	Multiple injuries, permanent disability	Fatality 0 – 1 fatalities	Multiple Fatalities 1 -10 fatalities	10 – 100 fatalities	100 – 1,000 fatalities	1,000 – 10,000 fatalities	> 10,000 fatalities
Financial Impacts (Direct and Indire	ect)	< \$100k	\$100k - \$1M	\$1M - \$10M	\$10M- \$100M	\$100M - \$1B	\$1B - \$10B	\$10B - \$100B	\$100B - \$250B	\$250B - \$500B	\$500B - \$1T	> \$1T

Likelihood		c	omprehensiv	ve Needs As	sessment-	Extension	of DWR Div	ision of Ope	rations & M	aintenance	Risk Matrix	
Annual		1	2	3	4	5	6	7	8	9	10	11
Probability		Insignificant	Minor	Moderate	High	Major	Extreme	Catastrophic				
1	10	10	20	30	40	50	60	70	80	90	100	110
1	9	9	18	27	36	45	54	6.2	70	01	00	99
3 x10 ⁻¹ – 1	8.5	8.5	17	25.5	34	42.5	51		Tolerable	Risk Guide	elines for	3.5
10 ⁻¹ – 3 x10 ⁻¹	8	8	16	24	32	40	48		Dam Safe	ty from FE	RC and	88
3 x10 ⁻² – 10 ⁻¹	7.5	7.5	15	22.5	30	37.5	45		other Fed	, eral Agenc	ies	2.5
10 ⁻² – 3 x10 ⁻²	7	7	14	21	28	35	42					7
10 ⁻³ - 10 ⁻²	6	6	12	18	24	30		42	48	54	60	66
10 ⁻⁴ - 10 ⁻³	5	5	10	15	20	25	30	-35	40	45	50	55
10 ⁻⁵ - 10 ⁻⁴	4	4	8	12	16	20	24	28	-32	36	40	44
10 ⁻⁶ - 10 ⁻⁵	3	3	6	9	12	15	18	24	24	27	30	33
10 ⁻⁷ - 10 ⁻⁶	2	2	4	6	8	10	12	14		18	20	22
< 10 ⁻⁷	1	1	2	3	4	5	6	7	8		10	11
Consequent						Co	onsequence					
Category		1	2	3	4	5	6	7	8	9	10	11
Category		Insignificant	Minor	Moderate	High	Major	Extreme	Catastrophic				
Public Safet (includingPerso Safety)	y nnel	No injury	Near miss, minor injuries	Minor injuries	Single injury	Multiple injuries, permanent disability	Fatality 0 – 1 fatalities	Multiple Fatalities 1 -10 fatalities	10 – 100 fatalities	100 – 1,000 fatalities	1,000 – 10,000 fatalities	> 10,000 fatalities
Financial Impacts (Direct and Indir	ect)	< \$100k	\$100k - \$1M	\$1M - \$10M	\$10M- \$100M	\$100M - \$1B	\$1B - \$10B	\$10B - \$100B	\$100B - \$250B	\$250B - \$500B	\$500B - \$1T	> \$1T

PFM		_					CNA Task	PFM Group	Previous	Cubasittan					
INO.	No.	Dam	CBND:	Loading	Component	Mechanism	Team	(A, B, C, D)	Category	Submitter					
1		Oroville Dam	founda materia 171 Pre-Workshop	PFMs	Cons	idered	5								
2		Oroville Dam	CBND: grout c in Previous PFMA	Worl	kshop	s and	5								
3		Oroville Dam	Brainstorming Ide	Brainstorming Ideas Submitted by 5											
4		Oroville Dam	CBND: earthque Lovol 2 Morkeh												
5		Oroville Dam		рга	nicipa	1115	5								
6		Oroville Dam	CRND: Seismic damage to site access roads and bridges	Farthquake	Embankment	Dam Access	5								
7		Orovi 🗸 3	5 PFMs (1 - 35) for Embankr	nents				-							
8		Orovi 🗸 1	9 PFMs (36 – 52, 116, 117) E	merge	ncy Sp	illway				P. Risher					
9		Orovi 🗸 6	4 PFMs (53 – 115, 118) for F	00						C. Womack					
10	H-3	Orovi 🗸 <u>5</u>	<u> 3 PFMs (119 – 171) for Hyatt</u>	, Pale	rmo, ar	d RVO	<u>S outl</u>	<u>ets</u>	2						
11		Orovi 1	71 PFMs Total												
12		Or	Internal erosion of fines from seepage barrier exiting into			Internal	_			D. Panec					
13		or SO	me PFMs – Previously Considered	d But No	ot Develo	oped (CB	ND)			T. Hepler					
14		or Ad	ditional PFMs added during Level	2 Risk	Analysis	Worksh	op Ses	sions		C. Womack					

CNA Existing Conditions Assessment PFM Development

Potential Failure Mode Analyses (PFMA):

Consideration and Development of PFMs – Example: Progression of Internal Erosion PFM

- Reservoir at or above threshold level Initiation Erosion starts Continuation Unfiltered or inadequately filtered exit exists Progression Continuous stable roof and/or sidewalls Progression Constriction or upstream zone fails to limit flows Progression No self-healing by upstream zone Unsuccessful detection and intervention Dam breaches (uncontrolled release of reservoir)

Potential Failure Modes

- Key Points to remember about PFMs and PFMAs
 - To the FERC, a failure is an uncontrolled release of water.
 - Operation of an emergency spillway is not an uncontrolled release of water.
 - Is such a thing as a restricted uncontrolled release outlet works, turbine, etc... Still considered a failure.
- Licensee Concerns
 - Unacceptable performance could be a failure to Licensee
 - A Licensee may consider the loss of a turbine a PFM even without a release of water. The FERC is concerned but it is not a dam safety concern

Example - Wanapum Dam

Past Focus on only *"Uncontrolled Release of Water"*

> from FERC Part 12D Training Workshop, January 2015

Independent Forensic Team - Lessons Learned

In practice today, PFMAs appear to be limited mainly to consideration of potential failures modes that lead to uncontrolled release of the reservoir. This can lead to potential failure modes with significant consequences short of reservoir release being ruled out of further consideration. In the case of Oroville Dam, the 2014 PFMA team essentially identified the two failures modes which initiated in February 2017, but ruled them out in large part because they were judged to be unlikely to lead to release of stored reservoir water....

...By ruling out these failure modes, they may have been removed from any further consideration in subsequent studies including future PFMAs.

from Independent Forensic Team Final Report, Pages 78-79, January 2018

20 Ogee Monoliths and RCC Buttresses

New 830-foot-long Crest Wall and Weir

Secant Pile Wall 35 – 70 feet deep

<u>PFM T1-6.1a</u>:

Ultimate Failure State: Failure of Secant Pile Wall, RCC Apron, and the 6 Large Monoliths – Leading to Uncontrolled Release, Significant Incremental Downstream Damages

PFM T1-6.1a:

Ultimate Failure State: Failure of Secant Pile Wall, RCC Apron, and 6 Monoliths – Leading to Uncontrolled Release, Significant Incremental Downstream Damages

<u>PFM T1-6.1b</u>: *Heavy Damage State*: Failure of Secant Pile Wall and RCC Apron, but Monoliths remain intact – No Uncontrolled Release, No Significant Incremental Downstream Damages

PFM T1-6.1a:

Ultimate Failure State: Failure of Secant Pile Wall, RCC Apron, and 6 Monoliths – Leading to Uncontrolled Release, Significant Incremental Downstream Damages

PFM T1-6.1b:

Heavy Damage State: Failure of Secant Pile Wall and RCC Apron, but Monoliths remain intact – No Uncontrolled Release, No Significant Incremental Downstream Damages

<u>PFM_T1-6.1c</u>:

Light Damage State: <u>Very Localized</u> Failure of Secant Pile Wall and Damage to RCC Apron, but Monoliths remain intact

No Uncontrolled Release,
 No Significant Incremental Downstream Damages

T1-6 Risk Summary – Public Safety and Life Loss

PFM No.					F	PFM Description					
T1-6	PMF and 100k cf	s loading, erosior	n rock d/s of seca	ant pile wall, head	dward cutting/er	osion through se	cant pile wall and	RCC apron. Ero	sion destabilizes	ES monoliths 15-2	20.
									Prelimin	ary	
					Risk Matrix:	Public Safety & L	ife Loss				
Total likelihood of failure	1 🗆 Insignificant	2□ Minor	3□ Moderate	4□ High	5□ Major	6□ Extreme, Life loss 0-1	7□ Catastrophic, Life loss 1-10	8□ Life loss 10-100	9□ Life loss 100- 1,000	10□ Life loss 1,000- 10,000	11□ Life loss > 10,000
Likely to occur 10 times a year	10	20	30	40	50	60	70	80	90	100	110
Likely to occur within 1 year	9	18	27	36	45	54	63	72	81	90	99
Likely to occur within 3 years	8.5	17	25.5	34	42.5	51	59.5	68	76.5	85	93.5
Likely to occur within 10 years	8	16	24	32	40	48	56	64	72	80	88
Likely to occur within 30 years	7.5	15	22.5	30	37.5	45	52.5	60	67.5	75	82.5
Likely to occur within 100 years	7	14	21	28	35	42	49	56	63	70	77
Likely to occur within 1,000 years	6	12	18	24	30	36	42	48	54	60	66
Likely to occur within 10,000 years	5	10	15	20	25	30	35	40	45	50	55
Likely to occur within 100,000 years	4	8	12	16	20	24	28	32	36	40	44
Likely to occur within 1,000,000 years	3	T1-6.3	9	12	15	18	21	24	27	30	33
Likely to occur within 10,000,000 years	2	12 010	6	8	10	12	14	16	18	20	22
Likely to occur less often than 10,000,000 years	1	T1-6.1c&2c	3	4	5	6	7	8	9	10	11

T1-6 Risk Summary – Regulatory Compliance

PFM No.					PF	M Description					
T1-6	PMF and 100k cfs	loading, erosion	rock d/s of secar	nt pile wall, headw	ard cutting/eros	sion through secant	pile wall and F	RCC apron. Ero	osion destabilizes I	ES monoliths 15-2	20.
									-		
-					Disk				Prelimina	ary	
	-				RISK	Matrix: Complian	ce				
		2	2	4	_						
Tc Total likelihood of failure	Insignificant	Minor	Moderate	+ High	5 Major						
Likely to occur 10 times a year	10	20	30	40	50						
Likely to occur within 1 year	9	18	27	36	45						
Likely to occur within 3 years	8.5	17	25.5	34	42.5						
Likely to occur within 10 years	8	16	24	32	40						
Likely to occur within 30 years	7.5	15	22.5	30	37.5						
Likely to occur within 100 years	7	14	21	28	35						
Likely to occur within 1,000 years	6	T1-6.3	18	24	30						
Likely to occur within 10,000 years	5	10	15	20	25						
Likely to occur within 100,000 years	4	8	12	T1-6.1c&2c	20						
Likely to occur within 1,000,000 years	3	6	9	12	15						
Likely to occur within 10,000,000 years	2	4	6	T1-6.1b&2b	10						
Likely to occur less often than 10,000,000 years	1	2	3	4	5						
				T1-6.2a	T1-6.1a						

T1-6 Risk Summary – SWP Water Delivery

P FM No. [1-6	PMF	and 100k cfs loa	ding, erosion ro	ck d/s of secant	pile wall, headwar	PFM d cutting/erosi	l Description on through secant	pile wall and RC	Capron. Erosio	n destabilizes ES I	monoliths 15-20.	
-						Risk M	1atrix: Complian	ce	P	reliminar	У	
					Risk M	Matrix: Flexib	ility and Reliabil	ity - Water De	livery	Prelimi	nary	
<mark>іс</mark> ц												
		1	2	3	4	5						
Total likelihood of failure		Insignificant	Minor	Moderate	High	Major						
Likely to occur 10 times a year		10	20	30	40	50						
Likely to occur within 1 year		9	18	27	36	45						
Likely to occur within 3 years		8.5	17	25.5	34	42.5						
Likely to occur within 10 years		8	16	24	32	40						
Likely to occur within 30 years		7.5	15	22.5	30	37.5						
Likely to occur within 100 years		7	14	21	28	35						
Likely to occur within 1,000 years		6	T1-6.3	18	24	30						
Likely to occur within 10,000 years		5	10	15	20	25						
Likely to occur within 100,000 years		4	8	12	T1-6.1c&2c	20						
Likely to occur within 1,000,000 year	S	3	6	9	12	15						
Likely to occur within 10,000,000 yea	irs	2	4	6	T1-6.1b&2b	10						
Likely to occur less often than 10,000),000 years	1	2	3	4	5	T1-6.1a&2a					

T1-6 Risk Summary – Other SWP Purposes

PFM	No.					PFM De	scription					
1-6	PMF a	nd 100k cfs loadi	ng, erosion rock o	l/s of secant pile	e wall, headward o	cutting/erosion t	hrough secant pile	wall and RCC apro	on. Erosion c	lestabilizes ES mo	noliths 15-20.	
						Risk Mat	rix: Compliance		Pr	eliminary	İ	
					Risk Ma	trix: Flexibility	, and Reliability -	Water Deliver	Y	Prelimina	iry	
<u>с</u> те					Risk Mat	rix: Flexibility	and Reliability -	Other SWP Pur	poses	Prelimina	ary	
" Li i! Li i! Li i! Li	Т. Ці	1	2	3	4	5						
ik _{i il}	Li Total likelihood of failure	Insignificant	Minor	Moderate	High	Major						
ik _{i il}	Li Likely to occur 10 times a year	10	20	30	40	50						
ik . :	Li Likely to occur within 1 year	9	18	27	36	45						
L# .ik:	Li Likely to occur within 3 years	8.5	17	25.5	34	42.5						
ik Lik	Li Likely to occur within 10 years	8	16	24	32	40						
"Lik il	Li Likely to occur within 30 years	7.5	15	22.5	30	37.5						
"Lik il	Li Likely to occur within 100 years	7	14	21	28	35						
"Lik	Li Likely to occur within 1,000 years	6	T1-6.3	18	24	30						
"Li	Li Likely to occur within 10,000 years	5	10	15	20	25						
	Li Likely to occur within 100,000 years	4	8	T1-6.1c&2c	16	20						
	Li Likely to occur within 1,000,000 years	3	6	9	12	15						
	Likely to occur within 10,000,000 years	2	4	6	T1-6.1b&2b	10						
	Likely to occur less often than 10,000,000 years	1	2	T1-6.3	4	5	T1-6.1a&2a					

T1-6 Risk Summary – Financial Impact

PFM N	No.						PFM Desci	ription					
T1-6		PMF an	d 100k cfs loading,	, erosion rock d/s	s of secant pile w	all, headward cu	tting/erosion thro	ough secant pile v	wall and RCC apr	on. Erosion dest	abilizes ES monol	iths 15-20.	
							Risk Matrix	: Compliance		Prel	iminary		
						Dick Mate	iy, Eloyihility a	nd Doliability	Water Delive	P	reliminar	y	
								nu Kellability -	water Denve				
TC T.				rposes	reliminar	У							
Lik Lik Lik	Т						Risk Mat	rix: Financial Im	pact		Prelimina	iry	
Lik Lik L	Li Li T ,												
Lik Lik Lik	Li Li Li I i	Total likelihaad of failuwa	1 Incignificant	2 Minor	3⊡ Mederate	4 🗌 Hiab	50 Major	60 Evtreme	70 Catactrophic	80 ¢1008 ¢2508	90 ¢2500 ¢5000	100 ¢5000 ¢1T	11□ 、 #1 ⁻
Lik		Likely to occur 10 times a year	10	20	30	40	50	60	70	80	90	100	> \$1 110
	Li Li	Likely to occur within 1 year	9	18	27	36	45	54	63	72	81	90	99
	Li Li	Likely to occur within 3 years	8.5	17	25.5	34	42.5	51	59.5	68	76.5	85	93.5
	Li Li	Likely to occur within 10 years	8	16	24	32	40	48	56	64	72	80	88
	Li Li	Likely to occur within 30 years	7.5	15	22.5	30	37.5	45	52.5	60	67.5	75	82.5
	Li Li	Likely to occur within 100 years	7	14	21	28	35	42	49	56	63	70	77
L	Li Li	Likely to occur within 1,000 years	6	12	18	24	30	36	42	48	54	60	66
l	Li Li	Likely to occur within 10,000 years	5	10	15	20	25	30	35	40	45	50	55
	Li	Likely to occur within 100,000 years	4	8	12	16	20	24	28	32	36	40	44
	Li	Likely to occur within 1,000,000 years	3	6	T1-6.3	12	15	18	21	24	27	30	33
		Likely to occur within 10,000,000 years	2	4	6	8	10	12	14	16	18	20	22
		Likely to occur less often than 10,000,000 years	1	2	3	4	5	6	7	8	9	10	11

PEM No.	PEM Description	Risk Score by Consequence Category							
T5-16	6 Concentrated leak erosion along instrumentation trenches and abandoned instrumentation bundles leads to failure by internal erosion.						Flexibility and	Flexibility and Reliability –	Preliminary
ID	Loading	Failure Description	Total likelihood of failure		Life Loss	Compliance	Reliability - Water Delivery	Other SWP Purposes	Financial Impact
1	T5-16.1	Concentrated erosion through a defect in the instrumentation trench leading to seepage and develops continuing erosion into Zone 2 material, Upstream Zones 2 and 3 fail to limit flow and lead to breach.	Likely to occur within 10,000,000 years	2	20	10	10	10	16
2	T5-16.2	Concentrated Leak Erosion through a defect in the instrumentation trench leading to excessive erosion along the trench. Upstream Zone 2 and 3 material eventually limit flow and halt upstream progression after erosion of the upstream Zone 3 material resulting in both a surficial depression on the upstream dam face and higher baseline seepage flows in the downstream seepage collection system but no breach.	Likely to occur within 1,000,000 years	3	21	12	9	9	18
3	T5-16.3	Concentrated Leak Erosion through a defect in the instrumentation trench leading to excessive erosion along the trench. Upstream Zone 2 and 3 material limit flow and halt upstream progression resulting in higher baseline seepage flows in the downstream seepage collection system but no breach.	Likely to occur within 100,000 years	4	16	8	8	8	12
4	T5-16.4	Concentrated seepage through a defect in the instrumentation trench that extends to the midpoint of the core where the instrument tubing turns vertical. The seepage intersects the broken tubing resulting in increased flows in the instrumentation tubing bundles at the terminal T and/or S.	Likely to occur within 10,000 years	5	5	5	5	5	10

PEM No	PEM Description					Risk Score by	Consequence	Category	
T5-16	Concentrated leak erosion along failure by internal erosion.	andoned instrumentation bundles l	Public Safety &		Flexibility and	Flexibility and Reliability – Other SWP	Preliminary		
ID	Loading	Failure Description	Total likelihood of failure		Ene coop	Compliance	Water Delivery	Purposes	Einancial Impact
1	T5-16.1	Concentrated erosion through a defect in the instrumentation trench leading to seepage and develops continuing erosion into Zone 2 material, Upstream Zones 2 and 3 fail to limit flow and lead to breach.	Likely to occur within 10,000,000 years	2	20	10	10	10	16
2	T5-16.2	Concentrated Leak Erosion through a defect in the instrumentation trench leading to excessive erosion along the trench. Upstream Zone 2 and 3 material eventually limit flow and halt upstream progression after erosion of the upstream Zone 3 material resulting in both a surficial depression on the upstream dam face and higher baseline seepage flows in the downstream seepage collection system but no breach.	Likely to occur within 1,000,000 years Focus of L Evaluatio	2RA ns³	21	12	9	9	18
3	T5-16.3	Concentrated Leak Erosion through a defect in the instrumentation trench leading to excessive erosion along the trench. Upstream Zone 2 and 3 material limit flow and halt upstream progression resulting in higher baseline seepage flows in the downstream seepage collection system but no breach.	Likely to occur within 100,000 years	4	16	8	8	8	12
4	T5-16.4	Concentrated seepage through a defect in the instrumentation trench that extends to the midpoint of the core where the instrument tubing turns vertical. The seepage intersects the broken tubing resulting in increased flows in the instrumentation tubing bundles at the terminal T and/or S.	Likely to occur within 10,000 years	5	5	5	5	5	10

CNA Existing Conditions Assessment <u>Status</u>

- ✓ Over 372 PFMs Considered
- ✓~127 PFMs fully developed (~245 CBND)

✓ Generally 3 to 4 Scenarios developed per PFM → ~407 PFM Scenarios fully developed (~3+ Scenarios/PFM x 127 PFMs = ~407 Scenarios)

 ✓ 5 Consequence Conditions Assessed per PFM Scenario
 → ~2056 PFM Consequences fully evaluated (~5 Consequences/Scenario x 407 Scenarios = ~2056)

Update on CNA PFM Development and CNA Existing Conditions Assessment

Presentation Outline

Background

- Review: Purpose of the CNA
- Risk-Informed Decision Making Approach
- Ongoing Independent Level 2 Risk Analysis
- Need for CNA Existing Conditions Assessment

Overview of CNA Existing Conditions Assessment

- PFM Development and Evaluation
- Example of PFM Development
- Comparisons of Estimated PFM Likelihoods with L2RA Estimates
- Preliminary Results to Date

HPS-3-A.1 – Summary

Major landslide triggered in cut slope below Palermo Canal due to leaks in canal lining, debris buries switchyard and shuts down Hyatt PP

HPS-3-A– PFM Event Tree

• HPS-3-A.1

- > Reservoir is above El. 640, all units in Hyatt are generating power
 - > Initiation Water leaks from Palermo canal. Slope materials retain water, creating high pore pressure and loss of shear strength.
 - Continuation Large landslide is triggered in cut slopes below Palermo Canal (Figures HPS 3A-A, B).
 - Progression Large amount of landslide debris flows about 200 feet and completely buries switchyard.
 - Switchyard is inoperable for 6-12 months and causes shutdown of Hyatt Powerplant.

• HPS-3-A.2

Moderate landslide triggered in cut slope below Palermo Canal due to leaks in canal lining-debris partially buries and shutdown switchyard for about 4 weeks.

• HPS-3-A.3

- Small slump in in cut slope below Palermo Canal due to minor leaks in canal lining- **no impact** on switchyard operations.
- HPS-3-A.4
 - Visible seepage and wet spots in cut slope below Palermo Canal due to minor leaks in canal lining- no impact to switchyard operations.

HPS-3-A PFM Scenario Visualization

HPS-3-A– Risk Matrix

PFM No.	PFM Description												
HPS-3-A	Normal Event.Lo	oss of Power Gen	eration – Switch	yard/Transmissio	n system offline	(grid separation)	due to Landslide						
		Risk Matrix: Public Safety & Life Loss											
							_		_				
	1	2	3	4	5	6 Extreme, Life	Zatastrophic.	8	9 Life loss	10 Life loss	11		
Total likelihood of failure	Insignificant	Minor	Moderate	High	Major	loss 0-1	Life loss 1-10	Life loss 10-100	100-1,000	1,000-10,000	Life loss > 10,000		
Likely to occur 10 times a year	10	20	30	40	50	60	70	80	90	100	110		
Likely to occur within 1 year	9	18	27	36	45	54	63	72	81	90	99		
Likely to occur within 3 years		17	25.5	34	42.5	51	59.5	68	76.5	85	93.5		
Likely to occur within 10 years	5A.4	16	24	32	40	48	56	64	72	80	88		
Likely to occur within 30 years		15	22.5	30	37.5	45	52.5	60	67.5	75	82.5		
Likely to occur within 100 years	7	14	21	28	35	42	49	56	63	70	77		
Likely to occur within 1,000 years		12	19	24	30	36	42	48	54	60	66		
Likely to occur within 10,000 years	5		15	20	25	20	35	40	45	50	55		
Likely to occur within 100,000 years		24.2		16	20	24	28	32	36	40	44		
Likely to occur within 1,000,000 years	HPS-	·3A.3		A 2	15	10	21	24	27	30	33		
Likely to occur within 10,000,000 years	2	-	HPS-3A.2			C 2 A 4	14	16	18	20	22		
Likely to occur less often than 10,000,000 years	1	2	3	4	HP	'S-3A.1	7	8	9	10	11		
					Ris	sk Matrix: Final	ncial Impact						
		-		4	-	-	_			10	11		
Total likelihood of failure	Insignificant	Minor	Moderate	High	Major	Extreme	Catastrophic	\$100B - \$250B	\$250B - \$500B	\$500B - \$1T	> \$1T		
Likely to occur 10 times a year	10	20	30	40	50	60	70	80	90	100	110		
Likely to occur within 1 year	9	18	27	36	45	54	63	72	81	90	99		
Likely to occur within 3 years	8.5	17	25.5	34	42.5	51	59.5	68	76.5	85	93.5		
Likely to occur within 10 years	8	16	24	32	40	48	56	64	72	80	88		
Likely to occur within 30 years	7.5	15	22.5	30	37.5	45	52.5	60	67.5	75	82.5		
Likely to occur within 100 years	7	14	21	28	35	42	49	56	63	70	77		
Likely to occur within 1,000 years	6	12	18	24	30	36	42	48	54	60	66		
Likely to occur within 10,000 years	5	10	15	20	25	30	35	40	45	50	55		
Likely to occur within 100,000 years	4	8	12	16	20	24	28	32	36	40	44		
Likely to occur within 1,000,000 years	3	6	9	12	15	18	21	24	27	30	33		
Likely to occur within 10,000,000 years	2	4	6	8	10	12	14	16	18	20	22		
Likely to occur less often than 10,000,000 years	1	2	3	4	5	6	7	8	9	10	11		

Update on CNA PFM Development and CNA Existing Conditions Assessment

Presentation Outline

Background

- Review: Purpose of the CNA
- Risk-Informed Decision Making Approach
- Ongoing Independent Level 2 Risk Analysis
- Need for CNA Existing Conditions Assessment

Overview of CNA Existing Conditions Assessment

- PFM Development and Evaluation
- Example of PFM Development
- Comparisons of Estimated PFM Likelihoods with L2RA Estimates
- Preliminary Results to Date

Comparison of CNA and L2RA PFMs Developed

	CNA Task Tea	am	Pre	eliminary	Level 2 Ris	PFMs Able to	
Task Teams	Facility	No. of PFMs Considered		No. of PFMs Developed	No. of PFMs Considered	No. of PFMs Developed	be Compared
<u>Task 1</u> : Emergency Spillway	Monoliths, Apron, SPW, Hillside	34		9 [9]			
<u>Task 3</u> :	Headworks	80		31			
FCO	O Chute			6			
	HPP Intake			9			
<u>Task 4</u> :	HPP and Switchyard	90		8 [21]			
Low Level Outlets	RVOS	00		8			
	Palermo			6			
	Main Dam			30			
<u>lask 5</u> : Embankments	Bidwell Bar Cyn SD	163	11 [50]				
	Parish Camp SD			9			
Total		372		127			

CNA Benefited from L2RA Workshop Meeting Notes

<u>Challenges in Comparing CNA PFMs</u> with L2RA PFMS

- ✓ L2RA Notes represent preliminary Draft Notes, not final results
- ✓ No PFMs have currently been performed for Emergency Spillway or FCO Chute by L2RA – scheduled towards the end of July
- Many L2RA PFMs rated simply as NEGLIGIBLE (<10⁻⁸) considered not really feasible or reasonable – many not considered fully developed in matrix as a result
- Many CNA PFMs rated simply as REMOTE (<10⁻⁷) without estimating actual likelihood – could be much lower
- ✓ Many PFMs developed by CNA and L2RA are similar, but not exactly the same some not carried to the same point of failure
- ✓ Many L2RA PFMs had likelihood estimates that ranged over 2 4 orders of magnitude; CNA Task Teams instructed to use just 1 order of magnitude

Comparison of CNA and L2RA PFMs Developed

	CNA Task Tea	m Preliminary		Level 2 Risk Analysis			PFMs Ahle to	
Task Teams	Teams Facility No. of PFI Consider		Ms red	No. of PFMs Developed	No. of PFMs Considered	No. of PFMs Developed		be Compared
<u>Task 1</u> : Emergency Spillway	Monoliths, Apron, SPW, Hillside	34		9 [9]	-	-		
<u>Task 3</u> :	Headworks	80	31		?	?	? Denotes that PFMs	
FCO	Chute	09		6	-	-	á	appear to not be
	HPP Intake			9	?	?	F -	finalized as
<u>Task 4</u> :	HPP and Switchyard	06	06	8 [24]	?	?	is being used wi	being used without
Low Level Outlets	RVOS	00		8 [31]	?	?	fina	al results shown in
	Palermo			6	?	?		the notes
	Main Dam			30	60	52		
<u>lask 5</u> : Embankments	Bidwell Bar Cyn SD	163		11 [50]	42 [134]	39 [104]	
	Parish Camp SD			9	32	13		
Total		372		127				

Comparison of CNA and L2RA PFMs Developed

	CNA Task Tea	Im Preliminary		Level 2 Ris	PFMs Ahle to					
Task Teams	ims Facility No. of Cons		Ms œd	No. of PFMs Developed	No. of PFMs Considered	No. of PFMs Developed	be Compared			
<u>Task 1</u> : Emergency Spillway	Monoliths, Apron, SPW, Hillside	34		9 [9]	-	-	-	[0]		
<u>Task 3</u> :	Headworks	89		80		32	?	?	12	- [12] -
FCO	Chute			6	-	-	-	[12]		
	HPP Intake			9	?	?	6			
<u>Task 4</u> :	HPP and Switchyard	90		8 [21]	?	?	3	[17]		
Low Level Outlets	RVOS	00		8	?	?	4	[17]		
	Palermo			6	?	?	4			
	Main Dam			30	60	52	26			
<u>lask 5</u> : Embankments	Bidwell Bar Cyn SD	163		11 [50]	42 [134]	39 [104]	10	[42]		
	Parish Camp SD			9	32	13	6			
Total		372		127	?	?	71			

Comparison of PFM Likelihood Estimates for FCO Spillway from CNA Task Teams and L2RA Team Preliminary

Task Team	No. of PFMs with Same Likelihood Estimates	No. of PFMs with 1 Order of Magnitude Difference	No. of PFMs with 2 Orders of Magnitude Difference	No. of PFMs with 3 Orders of Magnitude Difference	Total No. of PFMs Compared
1	-	-	-	-	-
3	8	2	1	1	12
4	12	4	1	0	17
5	20	20	2	0	42
Total	40	26	4	1	71

56% of PFMs with Same (Order of Magnitude) Likelihood Estimates (40/71) 93% of PFMs within 1 Order of Magnitude Difference in Likelihood Estimates (66/71)

Update on CNA PFM Development and CNA Existing Conditions Assessment

Presentation Outline

Background

- Review: Purpose of the CNA
- Risk-Informed Decision Making Approach
- Ongoing Independent Level 2 Risk Analysis
- Need for CNA Existing Conditions Assessment

Overview of CNA Existing Conditions Assessment

- PFM Development and Evaluation
- Examples of PFM Development
- Comparisons of Estimated PFM Likelihoods with L2RA Estimates
- Preliminary Results to Date

Next Steps Include:

- ✓ Internal Review of PFM Risk Estimates for consistency within and across Task Teams
- Reconcile Remaining Significant Differences between CNA and L2RA Risk Estimates
- Continue Developing Risk Reduction Measures

750

Questions?

Outlet Portals -

Area Control Cornel -

Smitthyard