Riparian Function Module Smith Creek Sub-Watershed

May 23, 2017

APPENDIX D Riparian Function Module

Table of Contents

Overview		
Part 1. Large Woody Deb	ris Recruitment	
Introduction		
Critical Questions		
General Approach and	Products	
	ducts	
	s	
	ent Assessment Report	
	Stream Temperature	
•		
	Products	
	ducts	
	n Temperature Assessment Re	
	Length by Riparian Vegetation	
	cruitment Impact Call by Char	
	Length by Estimated Canopy	
	Lenger by Estimated Carlopy	
orginetic internet		
Version 5.0	D-1	May 2011

Washington Watershed Analysis Manual

Watercourse Classification

Timber Harvesting History

Google Earth 5/28/2014

Table D-1: Dominant Vegetation Types

>= 70% Coniferous Species	Conifer Dominated	
>= 70% Hardwood Species	Hardwood Dominated	
All Other Cases	Mixed	

Table D-2: Average Tree Size Classes

Small	<12 inches DBH
Medium	>=12 and < 20 inches DBH
Large	>=20 inches DBH

¹Under certain circumstances, age may be a reliable indicator of tree diameter; if this is the case, the analyst may obtain forest age class data from landowners and use the information to correlate age and diameter.

Table D-3: Stand Density Classes

-	Density is sparse if more than 1/3 of the ground is exposed. Otherwise, it is dense.
Eastern	Density is sparse if more than 1/2 of the ground is exposed.
WA	Otherwise, it is dense.

Classify riparian vegetation based on:

- Vegetation type
- Tree size
- Stand density

Classify for both sides of the fish bearing channels in the assessment area.

06/07/2014 NAIP

Segment	Classification	Length (ft)	LW Recruitment Potential
1	CSD	2400	Low
2	CLD	2400	High
3	CSD	1600	Low
4	CLD	1600	High
5	MMD	6000	High
6	MLD	6000	High

MLD = 6,000 feet; MMD = 6,000 feet; CLD = 4,000 feet; CSD = 4,000 feet

Preliminary Conclusions

California Modifications

- The WA Watershed Analysis method presumes <u>conifer mortality rates</u> that are much higher for Douglas-fir than for coast redwood.
- Therefore, we will modify CLD, MLD, and MMD from high to moderate for large wood recruitment potential.
- Moderate = 16,000 feet; Low = 4,000 feet.

Smith Creek at LWD site 4, THP 1-13-031 MEN

Mendocino Coast: Second Growth (logging debris not included)

Source: Benda 2011

2/3rd of wood recruitment NOT from tree mortality

Preliminary Conclusions

- Existing channel conditions in the Smith Creek sub-watershed are unknown with this analysis.
- DFW (2012) stream survey report for the part of the Smith Creek reach in this assessment area:
 - 32% conifer, 67.4% hardwood
 - 92.7% canopy
 - Residual pool depth: 73% < 2 feet
- DFW and Campbell Global work in the Campbell Creek planning watershed suggests that **wood loading is low**.
- A reasonable hypothesis is that fish production can be increased with wood enhancement work.

DFW 2012 Smith Creek Stream Survey—Reach 2