## OROVILLE DAM CITIZENS ADVISORY COMMISSION

Meeting 21 October 24, 2025

Hosted by the California Natural Resources Agency



# ITEM 1 WELCOME

#### ROLL CALL

- Secretary of the California
   Natural Resources Agency
- California State Assembly
- California State Senate
- Director of the Department of Water Resources
- Director of the Office of Emergency Services
- Director of the Department of Parks and Recreation

- CHP Butte County Field Division Appointee
- City of Oroville Appointees
- County of Butte Appointees
- County of Sutter Appointees
- County of Yuba Appointees
- Butte County Sheriff Appointee
- Sutter County Sheriff Appointee
- Yuba County Sheriff Appointee

## **OPENING REMARKS CONTINUED**

### ITEM 2

### OROVILLE DAM SAFETY PROGRAM UPDATE

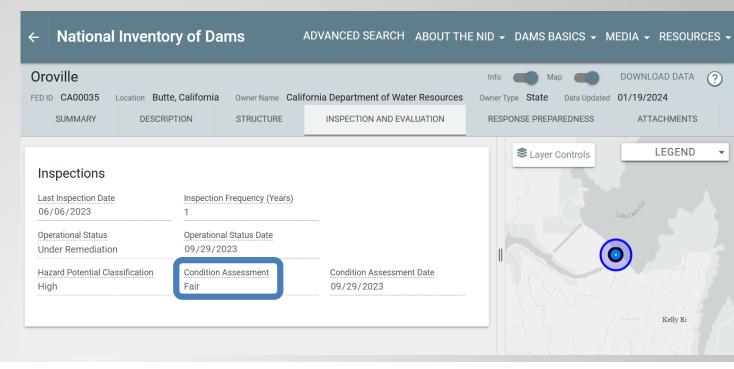

David Sarkisian, PE, CEG

**Manager, Dam Safety Services** 

**Division of Operations and Maintenance** 

## **Update/Topics**

- Condition Assessment Ratings and Emergency Spillway Erodibility Study
- Flood Control Outlet Projects and Activities
- Director's Safety Review Board and FERC Part 12D Safety Inspections






## **Condition Assessment Ratings**

- FERC and DSOD assign Condition
   Assessment Ratings as well as Hazard
   Potential Classifications.
- FERC's ratings are adopted and posted in the National Inventory of Dams Database.
- DSOD: Current Rating of "Fair" due to questions about the emergency spillway's ability to pass the Probable Maximum Flood without experiencing excessive erosion that could compromise the stability of the ES monoliths and result in an uncontrolled release.
- Also reflected in NID database.





#### Satisfactory

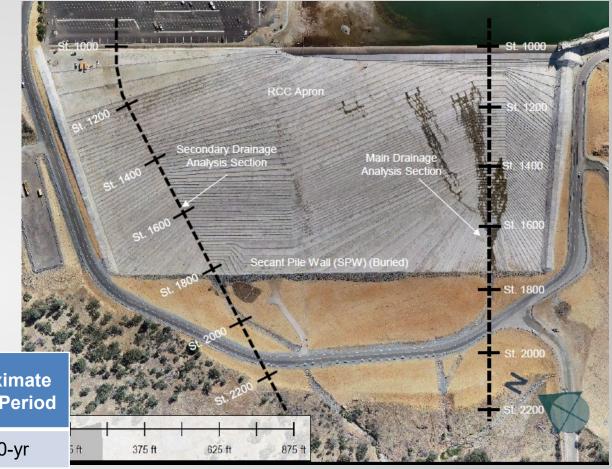
No existing or potential dam safety deficiencies are recognized. Acceptable performance is expected under all loading conditions (static, hydrologic, seismic) in accordance with the minimum applicable state or federal regulatory criteria or tolerable risk guidelines.

#### Fair

No existing dam safety deficiencies are recognized for normal operating conditions. Rare or extreme hydrologic and/or seismic events may result in a dam safety deficiency. Risk may be in the range to take further action. Note: Rare or extreme event is defined by the regulatory agency based on their minimum applicable state or federal criteria.

#### Poor

A dam safety deficiency is recognized for normal operating conditions which may realistically occur. Remedial action is necessary. POOR may also be used when uncertainties exist as to critical analysis parameters which identify a potential dam safety deficiency. Investigations and studies are necessary.


#### Unsatisfactory

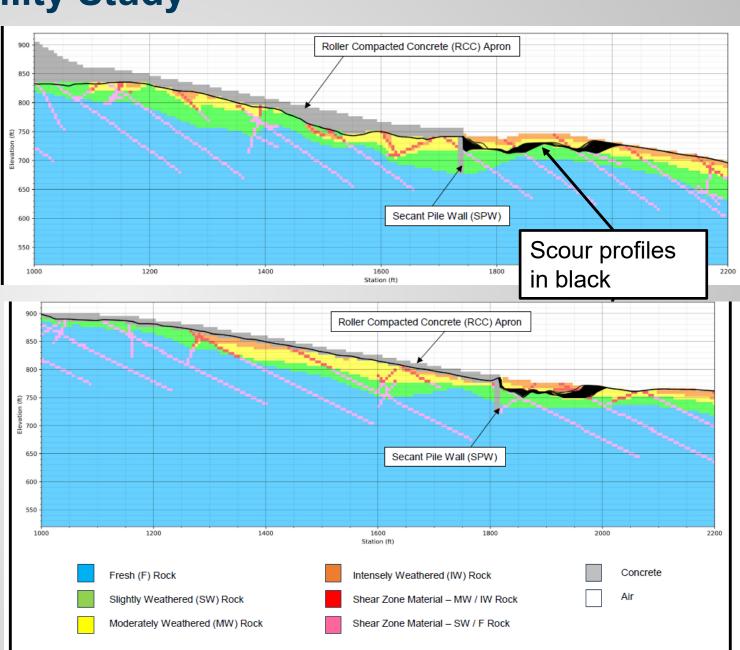
A dam safety deficiency is recognized that requires immediate or emergency remedial action for problem resolution.

**Emergency Spillway Erodibility Study** 

- State-of-the-art analysis
  - Back-Analysis of 2017 Incident utilized to establish Erodibility Parameters.
  - Considered time-rate of scour (rather than infinite flow at peak discharge)
- Two cross sections evaluated through the drainages within the roller compacted concrete apron that concentrate flows.

| Scenario                      | Peak Reservoir<br>Elevation (feet)<br>NGVD29 | Peak Emergency<br>Spillway Discharge<br>(cfs) | Approximate<br>Return Period |
|-------------------------------|----------------------------------------------|-----------------------------------------------|------------------------------|
| 1                             | 907.5                                        | 90,000                                        | 2,000-yr                     |
| 2                             | 910.2                                        | 155,000                                       | 3,000-yr                     |
| 3                             | 914.2                                        | 263,000                                       | 10,000-yr                    |
| 4 (Probable<br>Maximum Flood) | 919.1                                        | 419,800                                       | 21,000-yr                    |
| 5 (ARkStorm)                  | 905.6                                        | 50,000                                        | N/A                          |




#### **Emergency Spillway Erodibility Study**

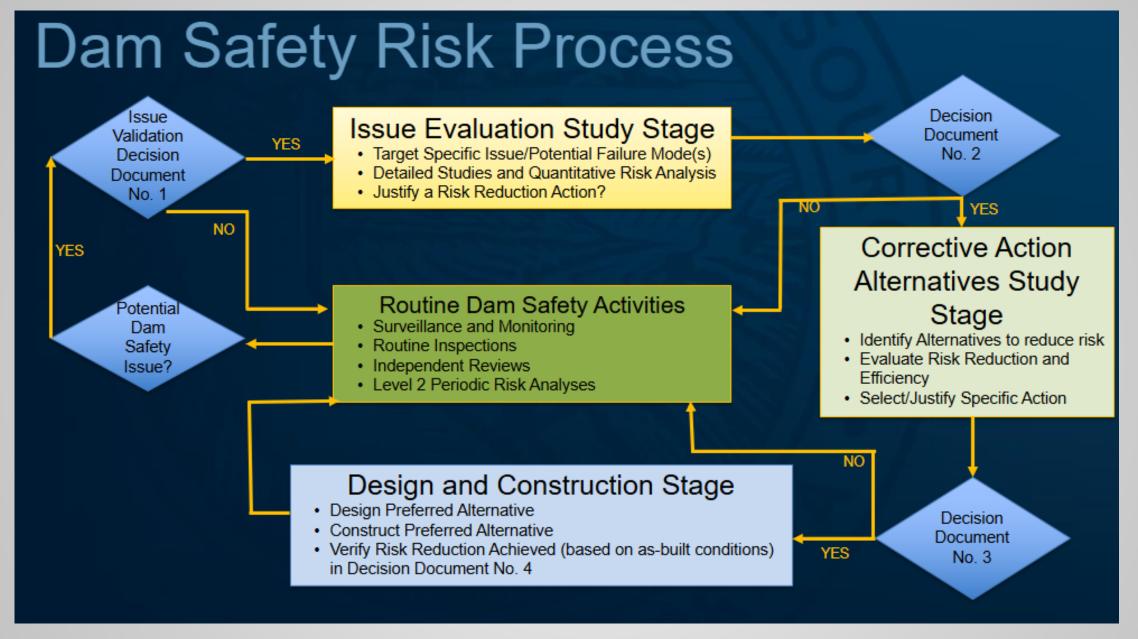
 Modeling results indicate that scour will <u>not</u> progress into Slightly Weathered Rock (green) for any of the outflows.

#### Main Conclusions:

- "The probabilistic results indicate the likelihood of spillway discharges undermining the Secant Pile Wall/Roller-Compacted Concrete (SPW/RCC) apron and causing head-cut progression towards the spillway crest is improbable.
- No modeled hydrograph scenarios up to and including the PMF, for either the Main or Secondary Drainage, resulted in simulated scour propagating upstream of the SPW".





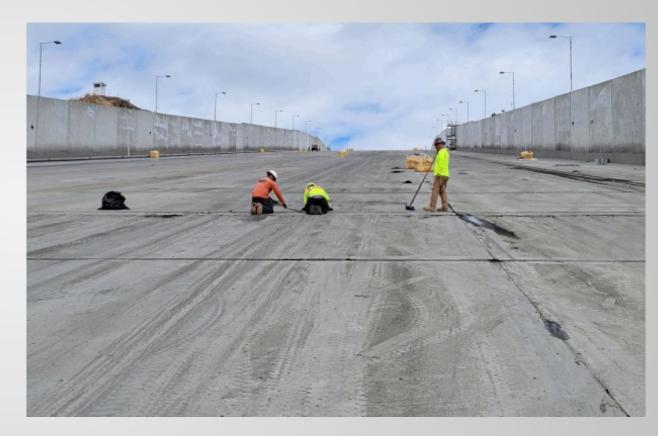

### **Next Steps**

- July 2025: DWR submitted the Issue Evaluation Study (Plan) to FERC & DSOD that
  identifies the "feeder" studies needed and team to conduct a Quantitative Risk Analysis on
  the topic of ES erodibility and potential for head-cutting to the monoliths.
  - Oroville Dam Stochastic Flood Event Analysis to finish (Dec 2025)
  - Radial Gate Reliability Study to finish (Dec 2025)
  - Quantitative Risk Analysis Workshop July 2026 (Alternate Sept 2026)
  - Issue Evaluation Study Report Dec 2026 (Alternate March 2027)

This approach follows FERC's Risk Informed Decision Making guidelines and processes adopted by the SWP Dam Safety Program to reach decisions for significant dam safety actions/projects.

 Goal: Reach consensus with FERC and DSOD on the Emergency Spillway's performance and need for any action/improvements for dam safety.







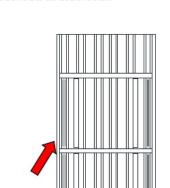

. .

#### Oroville Dam Flood Control Outlet Project/Activities

- Spillway Maintenance Contract (Spec No. 23-15) Year 3 of 3
  - Informed by annual inspection conducted prior to contractor's full mobilization
  - Anticipate joint sealant repairs, minor concrete repairs.
- Radial Gate Standby Generator Project
  - Approved by FERC; Fulfills Comprehensive Needs Assessment Measure T3-BH.2
  - Includes installation of a new standby generator and associated equipment for gate operations, including improvements (quick-connects) for use of a temporary portable generator.
  - Fulfills Comprehensive Needs Assessment Measure T3-BH.2
  - Construction 2026-2028







#### **Oroville Dam Flood Control Outlet Radial Gates**

- Gates subject to full-open exercises every year that includes measurements of electrical power draw to monitor for any binding/friction.
- 2017: Hoist Rope magnetic particle testing no wire breaks
- 2022: 10-year Structural, Mechanical, and Electrical Inspection
  - Found suitable for continued operation
  - Recommendations focused on continued maintenance and monitoring
  - Wire ropes inspected and measured, with no evidence of advanced wear
  - Inflatable side seals are not receiving sufficient pressure from water line to counter reservoir pressure, which results in leakage when the reservoir is high.
  - Seal rehabilitation project initiates in 2026









observed at side seal.

Photo 4-94: Gate 2 - Typical day-light gap

| (A)                          | (B)                         | (C)           | (D)               | (E)            | (F)               |
|------------------------------|-----------------------------|---------------|-------------------|----------------|-------------------|
| Percentage of Coating Damage | Degree of Coating<br>Repair | Coating Grade | Corrosion By Area | Max. Pit Depth | Overall Integrity |
| 1-5%                         | Minor Spot                  | 5             | None              | None           | Good              |

#### **Non-Destructive Examinations**

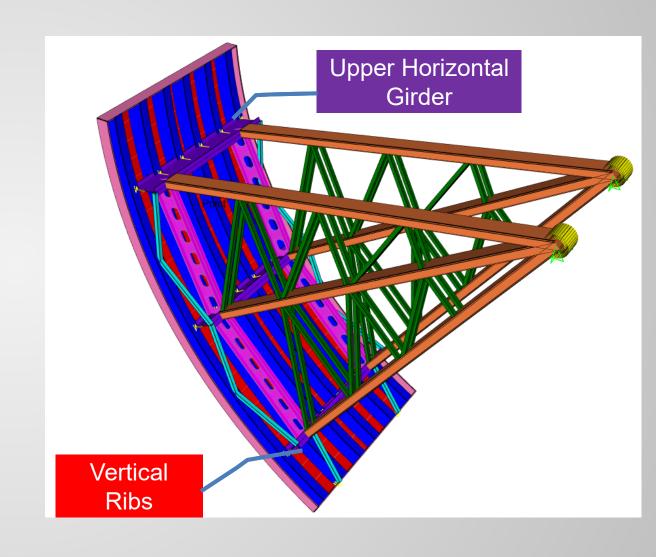
- Radial gates are "tied" to the structure by high strength steel (tensioned) anchor rods embedded within the concrete piers.
- Rods are grouted, and would require invasive, destructive drilling for replacement. Curvature and density of rods makes replacement infeasible.
- Ultrasonic testing of anchor rods (382) performed on an annual basis to monitor for cracking/corrosion in vicinity to grip nut.
- Periodic testing by USACE performed (guided wave method) used to monitor for any breaks/major cracks at depth along the rod.
- No significant anomalies.
- Structural analyses indicate significant redundancy provided by number of rods, including for seismic loading.
- Alternatives for structural support or redundant gates being considered in upcoming Flood Control Outlet studies.





#### Oroville Dam Flood Control Outlet Project/Activities

- Radial Gate Reliability Study (December 2025)
  - Focuses on electrical, mechanical, and control equipment.
  - Evaluates historical performance, maintenance/inspection practices, and remaining service life.
  - Informs need to maintain or replace components most critical to gate operations and refine maintenance/inspection practices.
  - Serves as key input to other risk analyses that must consider the likelihood of radial gates to operate "on demand".






## Oroville Dam Flood Control Outlet Project/Activities

#### Radial Gate Seismic Retrofits

- Scope to include strengthening of select gate components (skinplate, vertical ribs, upper horizontal girder), coating repairs, and trunnion pin inspections. Address maintenance recommendations from inspections.
- Design Phase: 2025-2028
- Construction Phase: 2028-2037
- Construction dependent on water levels and must consider other FCO activities such as hoist replacements.





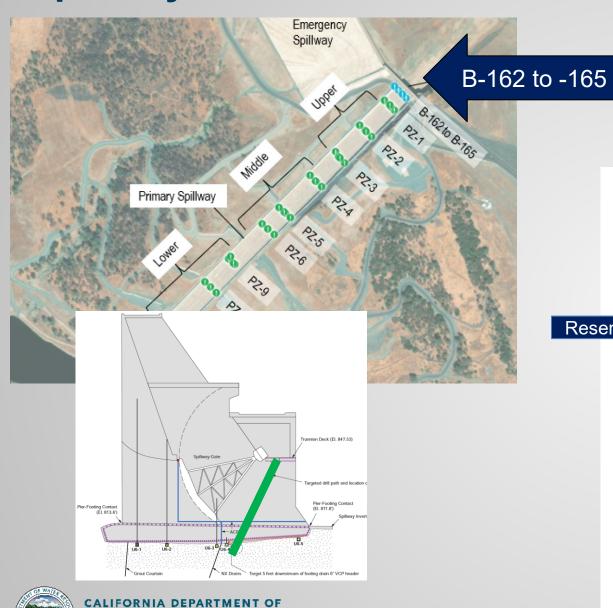
#### Flood Control Outlet – Pier 10 Crack

Prior to 2017, the crack was monitored for changes and painted red to assist in visual monitoring for potential growth over time. Red paint (2-4 inches wide) was much wider than the crack itself (0.04 inches).

#### 2018 Structural Inspection:

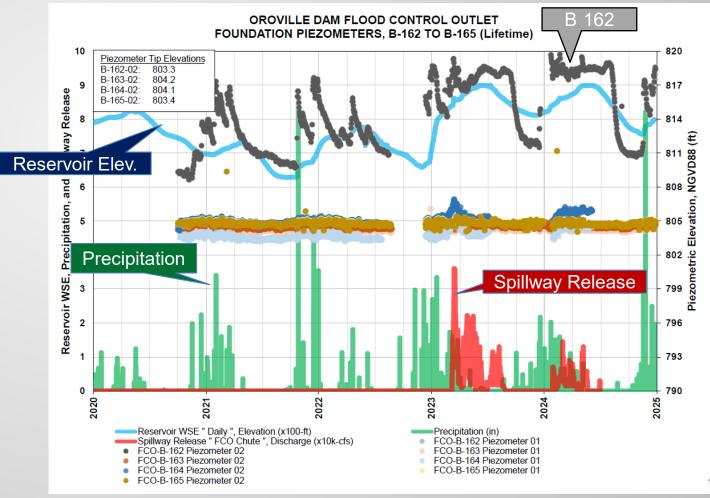
- Crack originates at a re-entrant corner of a notch in the pier wall for the roadway bridge deck.
- Extends down in upstream direction at about 45 degrees for about 12 feet.
- Measured as 0.04 inches wide ("fine" crack per USACE criteria)
- Non-structural in nature, caused by tensile stress concentrations at the reentrant corner as a result of concrete shrinkage following construction.
- Minor seepage noted, fed by surface drainage adjacent/external to Pier 10 which concentrated water (corrected).
- All other cracks in FCO also considered non-structural and fine (0.04 inches wide or less).

2019 Crack Sealing: Epoxy injection and surface application


<u>Annual Inspections</u> – No notable changes






2019 Pier 10 Crack Sealing, light grey epoxy injection and surface application; much wider than actual crack which is 0.04 inches wide

#### **Spillway Performance – Flood Control Outlet Piezometers**



ATER RESOURCES

- Piezometers have not exhibited high ground water pressures with the spillway releases nor the high reservoir condition.
- B-162 (in grey), located in Pier 1 at the edge of the Monolith, continues to show a response to precipitation and sustained lake levels.
- Data continues to demonstrate high quality foundation and concretebedrock contact, and lack of uplift pressures



## Flood Control Outlet (FCO) Monoliths 25 & 26 Seismic Retrofits Timeline

2018-2021

2022-**2027** 

2027 +

## FCO Non-Linear Analysis of Existing Conditions

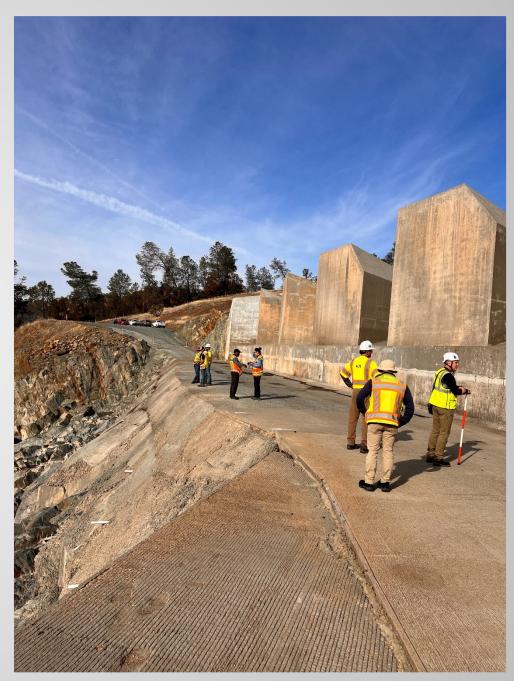
- Sophisticated computer modeling
- Submitted Results to DSOD & FERC

- Incorporate Piezometer Data into Modeling
- Quantitative Risk Analysis
- Identify most effective/efficient combination of Risk Treatments.

- Issue Evaluation Plan/ Corrective Action Alternatives Study Plan submittal to FERC
- Quantitative Risk Workshops planned for 2027

If Feasible and Risk Reduction Sufficient: Initiate Retrofit Design and Permitting

If Not Feasible or Risk Reduction Insufficient: Consider New FCO Headworks Structure (Continues to be Unlikely)


Design and Construction
 Phases have been included in SWP Dam Safety
 Program's planning and budgeting.



## 5-Year Director's Safety Review Board / Part 12D Safety Inspections for Oroville Complex Dams

- California Water Code Director's Safety Review Board
- Federal Energy Regulatory Commission's Part 12D Safety Inspection.
- Retained Consultants through a Request for Qualifications process and approved by FERC and DSOD.
- December 5 7, 2023: DSRB inspection with DSOD
- January 22 25, 2024: Part 12D Periodic Inspection with FERC
- DSRB Reports were finalized in May 2024.
- Part 12D Periodic Inspection Reports were finalized in July 2024.
- Oroville, Parish Camp Saddle, and Bidwell Bar Canyon Saddle Dams found safe for continued use and reservoir impoundment.





#### **Next Cycle of FERC Part 12D Inspections**

- Oroville, Parish Camp, Bidwell Bar Canyon, and Thermalito Diversion Dams will be Part 12 "Comprehensive Assessments".
  - Includes Potential Failure Mode Analysis/Level 2 Risk Analysis
  - Scope of Work for Independent Consultants includes visual inspection of facilities and reviews of:
    - Engineering analyses on-record,
    - Dam safety instrumentation data and performance
    - Progress on previous recommendations
    - Public Safety Program
    - Owner's Dam Safety Program
- Late 2027: Retain Independent Consultant Team
- 2028: Perform Inspections, PFMA/Level 2 Risk Analyses
- July 2029: Submit Reports to FERC



| 16-6 Comprehensive Assessments                                        | 16-4 |
|-----------------------------------------------------------------------|------|
| 16-6,1 General                                                        | 16-4 |
| 16-6.2 Review of Prior Reports                                        |      |
| 16-6.3 Review and Evaluation of Design Basis and Construction         | 16-4 |
| 16-6,3,1 General                                                      |      |
| 16-6.3.2 Documenting the Review                                       | 16-4 |
| 16-6,4 Review and Evaluation of Previous Analyses                     |      |
| 16-6.4.1 General                                                      | 16-4 |
| 16-6,4,2 Evaluation Requirements                                      | 16-4 |
| 16-6.4.3 Documenting the Review                                       | 16-5 |
| 16-6.5 Review of the STID and Digital Project Archive (DPA)           | 16-5 |
| 16-6.5.1 General                                                      |      |
| 16-6,5.2 Documenting the Review                                       | 16-5 |
| 16-6.6 Potential Failure Modes Analysis and Risk Analysis             | 16-5 |
| 16-6.6.1 General                                                      |      |
| 16-6,6.2 Potential Failure Modes Analysis                             | 16-5 |
| 16-6.6.3 Risk Analysis                                                | 16-5 |
| 16-6.6.4 Requirements for Review and Evaluation                       | 16-5 |
| •                                                                     |      |
| 16-6.7 Observations and Evaluations of Performance                    |      |
| 16-6.7.1 Physical Field Inspection                                    |      |
| 16-6.7.2 Review of Instrumentation Data and Surveillance Reports      |      |
| 16-6.8 Review and Evaluation of Dam and Public Safety Programs        |      |
| 16-6.8.1 Owner's Dam Safety Program                                   |      |
| 16-6.8.2 Performance Monitoring Program (Surveillance and Monitoring) |      |
| 16-6.8.3 Hazard Potential Classification                              |      |
| 16-6.8.4 Emergency Action Plan                                        |      |
| 16-6.8.5 Public Safety Plan                                           | 16-6 |
| 16-6.8.6 Operations and Maintenance Programs                          |      |
| 16-6.9 Evaluation of Spillway Adequacy                                |      |
| 16-6.9.1 General                                                      |      |
| 16-6.9.2 Conditions Affecting Spillway Capacity                       |      |
| 16-6.9.3 Consequences of Inadequate Capacity                          |      |
| 16-6.9.4 Documenting the Review                                       | 16-7 |
| 16-6.10 Additional Information for the CAR                            |      |
| 16-6.10.1 Summary of Findings                                         |      |
| 16-6.10.2 Risk Analysis and Dam Safety Risk Classification (DSRC)     | 16-7 |
| 16-6.10.3 Recommendations                                             |      |
| 16-6.10.4 Project Description                                         |      |
| 16-6.10.5 Changes Since the Previous Part 12D Report                  |      |
| 16-7 Follow-up and Corrective Measures                                | 16-7 |
| 16-7.1 General                                                        |      |
| 16-7.2 No Action and Alternatives                                     | 16-7 |
| 16-7.3 Emergency Corrective Measures                                  | 16-7 |
| 16-7.4 Periodic Updates                                               |      |
| 16-7.5 Comprehensive Assessment Review Meeting                        | 16-7 |
|                                                                       |      |

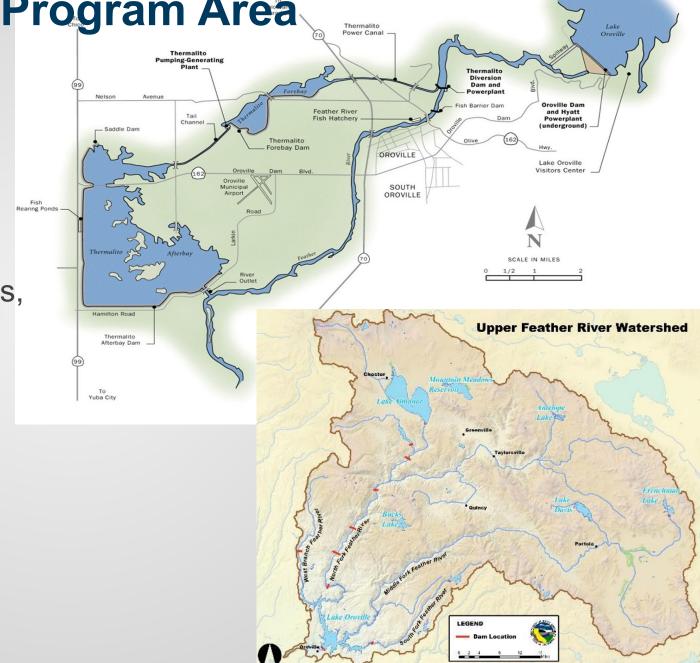


### ITEM 3

## OROVILLE ANNUAL BUDGET & PROJECT PRIORITIZATION UPDATE

## State Water Project Oroville Annual Maintenance & Projects

Oroville Citizens Advisory Commission Meeting October 21, 2025


Scott Turnquist, Oroville Field Division Manager SWP Division of Operations and Maintenance



Oroville Field Division Program Area Responsibilities:

Operations and Maintenance of:

- Oroville Thermalito Complex
  - 7 dams, 2 pump/gen power plants, 1 powerplant, reservoirs, recreation facilities, Feather River Fish Hatchery, Lake Oroville Visitors Center
- Upper Feather River Facilities
  - 3 dams and reservoirs
  - Water master service areas
  - Weather / Precipitation monitoring sites





## **Annual O&M Field Division Activities**

#### **Facilities Operations & Maintenance**

- Preventative Maintenance
- Condition Assessment Inspections
- Dam Safety Surveillance
- Civil Maintenance
- Facilities Security
- Facilities Safety
- Plant Operations
- Visitors Center Operations
- Area Control Centers
- Planning and Scheduling

#### **Field Division Administration**

- Business Services (Warehouse Operations)
- Training & Development
- Program Management
- Service Contracts
- Engineering Support
- FERC License Compliance





## **Annual Operation & Maintenance Activities**

#### **HYATT POWERPLANT**

- Unit Reliability Outage
- Condition Assessment Program Inspection
- Unit Transformers Annual Maintenance
- Unit Annual Maintenance & Relay Testing
- Switchyard and Breaker Inspections
- Unit Runner Inspections and Repair
- Fire Systems Annual Inspection/Testing
- Station Service Annual Maintenance
- Battery/Charger Testing

#### THERMALITO POWERPLANT

- Unit Reliability Outage
- Condition Assessment Program Inspection
- Unit Transformer Annual Maintenance
- Station Service Transformer Annual Maintenance
- Fire Systems Annual Inspection/Testing
- Unit Breaker Maintenance
- Bypass Gate Reliability Inspection
- Battery/Charger Testing

#### THERMALITO DIVERSION DAM POWERPLANT

- Unit Annual Outage/Inspection
- Radial Gate Full Open Testing

#### OROVILLE DAM/LAKE / THERMALITO FB/AB / OTHER LOCATIONS

- DSOD/FERC Annual Inspections
- Intake Shutter Annual Maintenance
- Fence Repair and Gate/Sign Maintenance
- Oroville Spillway Radial Gate Testing
- Roadway Maintenance
- Fish Hatchery Annual Maintenance
- Oroville Lake Debris Removal/Log Boom Maintenance
- Dam Surveillance and Monitoring DAILY
- Water Flow and Temperature Monitoring DAILY
- Water Quality Sampling
- Debris Removal/Erosion Repair All Dams
- Vegetation Maintenance All Dams
- Fuel Load Reduction

#### **UPPER FEATHER RIVER DAMS/LAKES**

- DSOD Annual Inspections
- Vegetation Maintenance All Dams
- Debris Removal All Dams
- Roadway Maintenance
- Debris Removal/Erosion Repair
- Precipitation Site Maintenance
- Dam Surveillance and Monitoring
- Watermaster Areas
- Annual Snow Surveys





## State Water Project Capital Prioritization Process



#### **Prioritization Output**

- Next year's Workplan
- Multi-year Capital Plan



## **Project Prioritization**

- SWP has more potential projects than could be accomplished in any given year (consistent with most every organization)
- DWR uses Asset Management principles to prioritize our work:
  - Assess the risk reduction for each project
  - Identify the resources needed for each project
- We use prioritization to determine how to:
  - Do the right work
  - At the right time
  - With the right resources



## **Risk Matrix**

| Likelihood                    |      |               |       |          |      |       |         |                                         |   |   |    |    |
|-------------------------------|------|---------------|-------|----------|------|-------|---------|-----------------------------------------|---|---|----|----|
| 10 times in a year            | 10   |               |       |          |      |       |         |                                         |   |   |    |    |
| w/in 1 year                   | 9    |               |       |          |      |       |         |                                         |   |   |    |    |
| w/ in 3 years                 | 8.5  |               |       |          |      |       |         |                                         |   |   |    |    |
| w/ in 10 years                | 8    |               |       |          |      |       |         |                                         |   |   |    |    |
| w/ in 30 years                | 7.5  |               |       |          |      |       |         |                                         |   |   |    |    |
| w/ in 100 years               | 7    |               |       |          |      |       |         |                                         |   |   |    |    |
| w/ in 1,000 years             | 6    |               |       |          |      |       |         |                                         |   |   |    |    |
| w/in 10,000 years             | 5    |               |       |          |      |       |         |                                         |   |   |    |    |
| w/in 100,000 years            | 4    |               |       |          |      |       |         |                                         | 1 |   |    |    |
| w/in 1,000,000 years          | 3    |               |       |          |      |       |         |                                         |   |   |    |    |
| w/in 10,000,000 years         | 2    |               |       |          |      |       |         |                                         |   |   |    |    |
| > 10,000,000 years            | 1    |               |       |          |      |       |         | *************************************** |   |   |    |    |
| Consequence Categor           |      | 1             | 2     | 3        | 4    | 5     | 6       | 7                                       | 8 | 9 | 10 | 11 |
| consequence categor           | у    | Insignificant | Minor | Moderate | High | Major | Extreme | Catastrophic                            |   |   |    |    |
| Public Safety                 |      |               |       |          |      |       |         |                                         |   |   |    |    |
| Financial Impact              |      |               |       |          |      |       |         |                                         |   |   |    |    |
| Personnel Safety              |      |               |       |          |      |       |         |                                         |   |   |    |    |
| Compliance                    |      |               |       |          |      |       |         |                                         |   |   |    |    |
| Flexibility & Reliability     | -    |               |       |          |      |       |         |                                         |   |   |    |    |
| Water Delivery                |      |               |       |          |      |       |         |                                         |   |   |    |    |
| Flexibility & Reliability - O | ther |               |       |          |      |       |         |                                         |   |   |    |    |
| SWP Purposes                  |      |               |       |          |      |       |         |                                         |   |   |    |    |
| Reputation                    |      |               |       |          |      |       |         |                                         |   |   |    |    |

## Consequence Criteria

| Consequence Category                              |                                                      | Consequence                                                       |                                                                                             |                                                                                                            |                                                                                                                           |                                   |                      |                        |                           |                                 |                       |
|---------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------|------------------------|---------------------------|---------------------------------|-----------------------|
|                                                   | 1                                                    | 2                                                                 | 3                                                                                           | 4                                                                                                          | 5                                                                                                                         | 6                                 | 7                    | 8                      | 9                         | 10                              | 11                    |
| Public Safety                                     | No injury                                            | Near miss                                                         | Minor injuries not requiring medical attention                                              | Single injury requiring medical attention                                                                  | Multiple injuries or<br>permanent disability                                                                              | Fatality<br>0 - 1                 | Fatalities<br>1 – 10 | Fatalities<br>10 - 100 | Fatalities<br>100 – 1,000 | Fatalities<br>1,000 –<br>10,000 | Fatalities<br>>10,000 |
| Financial Impact                                  | < \$100k                                             | \$100k - \$1M                                                     | \$1M - \$10M                                                                                | \$10M - \$100M                                                                                             | \$100M - \$1B                                                                                                             | \$1B - \$10B                      | \$10B -<br>\$100B    | >\$100B                |                           |                                 |                       |
| Personnel Safety                                  | No injury                                            | Near miss or minor<br>injuries not requiring<br>medical attention | Single injury<br>requiring medical<br>attention                                             | Multiple injuries<br>requiring medical<br>attention or<br>permanent disability                             | Fatality<br>0 - 1                                                                                                         | Fatalities<br>1 - 10              | Fatalities<br>>10    |                        |                           |                                 |                       |
| Compliance                                        | No violation                                         | Minor restrictions or increased oversight.                        | Violation or fines                                                                          | Violation(s), fines,<br>restricted use or<br>prosecution                                                   | Sanctions. Lose rights to operate a facility                                                                              |                                   |                      |                        |                           |                                 |                       |
| Flexibility and Reliability  – Water Delivery     | No impact                                            | Unable to meet<br>delivery schedule in<br>a Field Division        | Unable to meet<br>water delivery<br>schedules in<br>multiple Field<br>Divisions             | Inability to meet SWP<br>water deliveries;<br>Cascading effect<br>results in damage to<br>other facilities | Inability to meet<br>health and safety<br>water needs;<br>Cascading effect<br>results in uncontrolled<br>release of water |                                   |                      |                        |                           |                                 |                       |
| Flexibility and Reliability  – Other SWP Purposes | No impact                                            | Minor impact to recreation and fish & wildlife                    | Minor impact to<br>power generation<br>Major impact to<br>recreation and fish<br>& wildlife | Minor impact to flood<br>control<br>Major impact to<br>power generation                                    | Major impact to flood control                                                                                             |                                   |                      |                        |                           |                                 |                       |
| Reputation                                        | Questions<br>raised by<br>elected local<br>officials | Questions by State or Federal officials                           | Negative local<br>media coverage<br>Concerns from<br>State or Federal<br>officials          | Negative sate media<br>coverage<br>Legislative hearing                                                     | Negative national<br>media coverage<br>Legislative action                                                                 | Consent to operate<br>SWP revoked |                      |                        |                           |                                 |                       |



## **Project Driven Risk Reduction**

Likelihood **DWR Division of Operations & Maintenance Risk Matrix** Likely to occur 14 21 28 42 49 10 times a year Likely to occur 30 6 12 18 24 42 36 within 1 year Likely to occur 5.5 11 16.5 27.5 35 38.5 within 3 years Likely to occur 5 10 15 25 30 35 within 10 years Likely to occur 13.5 4.5 22.5 26 31.5 within 30 years Likely to occur within 100 12 20 24 28 Likely to occur within 1000 3 9 15 18 21 Likely to occur within 10,000 2 6 8 12 14 Likely to occur within 100.000 4 3 5 6 years Consequence 1 3 5 7 2 Insignifican Minor Moderate High Major Catastrophi Consequence Extreme Category

#### **Pre-Project Risk**

If no action is taken, risk is here

#### **Mitigated Risk**

We have reduced risk by X points

#### **Post-Project Risk**

If action is taken risk is here



## **Oroville Expenditures**

| F                                     |         | Actual Exp | Planned Expenditures |         |         |                 |
|---------------------------------------|---------|------------|----------------------|---------|---------|-----------------|
| Expense Type                          | CY2021  | CY2022     | CY2023               | CY2024  | CY2025  | CY2026          |
| Annual Operations & Maintenance (O&M) | \$53.0M | \$60.7M    | \$60.3M              | \$66.4M | \$55.6M | \$59.3M         |
| Capital Projects                      | \$45.3M | \$41.5M    | \$60.6M              | \$28.2M | \$39.3M | \$32.5M         |
| TOTAL                                 | \$98.2M | \$102.2M   | \$120.9M             | \$94.6M | \$94.9M | \$91.7 <b>M</b> |

Notes: 1. Includes Dam Safety Services projects.

2. RVOS and Bridge Seismic Retrofit projects moved out of OFD project budget starting in CY24



## 2025 Capital Improvement Projects

| Name                                     | Total Estimated<br>Project Budget |            | Name                                          | al Estimated<br>iject Budget |
|------------------------------------------|-----------------------------------|------------|-----------------------------------------------|------------------------------|
| TADM Radial Gate Programmatic REF        | \$                                | 30,680,853 | . 13                                          | <br>jeet Buuget              |
| TADM Well Replacement Phase 2            | \$                                | 10,393,379 | OPH LCB Office Building - Phase 1             | \$<br>1,988,943              |
| Canyon Crk Bridge - T-1 Steel BW Rep     | \$                                | 10,353,504 | Canyon Crk Bridge Seismic Retrofit Ph1        | \$<br>1,607,013              |
| OFD FCO SEG Relocation and Upgrade       | \$                                | 9,951,587  | CNA Early Imp. Raise PCDM Assessment          | \$<br>1,569,732              |
| FRFH Water Treatment Upgrades Ph 1       | \$                                | 8,781,347  | THPP Gantry Crane Refurb                      | \$<br>1,387,077              |
| HYPP Unit #4 Generator Ref               | \$                                | 8,498,203  | McCabe Cove Cultural Resources                | \$<br>1,364,827              |
| Oroville Dam FCO Spillway Repairs        | \$                                | 6,398,538  | CNA Early Imp. Palermo Canal Relining         | \$<br>1,208,137              |
| ORDM Grout Gallery Piezo Install         | \$                                | 6,151,316  | HYPP 13.8kV Breaker Retrofit                  | \$<br>1,075,440              |
| Seal and Pave Roads - OFD                | \$                                | 4,923,405  | Oroville FD ACC Video Wall                    | \$<br>1,004,061              |
| FCO Hoist Refurbishment                  | \$                                | 4,190,934  | OP102 HYPP Manual Update                      | \$<br>949,429                |
| Enterprise Bridge Seismic Retrofit Ph 1  | \$                                | 3,335,272  | ORDM FCO Radial Gate Seis Repair Design       | \$<br>939,321                |
| TPC Slope Repair Phase 1                 | \$                                | 3,193,513  | HYPP Spare Transformer Refurbishment          | \$<br>863,407                |
| HYPP and THPP 230KV Retrofit             | \$                                | 3,030,206  | HYPP Intake Gates Replacement - Ph1 Design    | \$<br>847,365                |
| THPP U1 Runner & Discharge Ring Refurb   | \$                                | 2,951,292  | HYPP Station Service Transformers Refurb      | \$<br>787,802                |
| THAB Western-Richvale Outlet Rehab       | \$                                | 2,739,592  | OFD O&M Center Admin HVAC Replacement         | \$<br>778,842                |
| ORDM FCO Seismic Retrofit Altern Study   | \$                                | 2,601,706  | HYPP Ventilation System Modification          | \$<br>729,019                |
| OFD - TPC Spall Repair                   | \$                                | 2,357,269  | Beckwourth Pavement Replacement               | \$<br>716,212                |
| Bidwell Bar Bridge Seismic Retrofit Ph 1 | \$                                | 2,077,336  | HYPP Service&Depress Air Compress Replacement | \$<br>380,228                |

Includes projects from Dam Safety Services and O&M Project Management (Bridges, Dams)

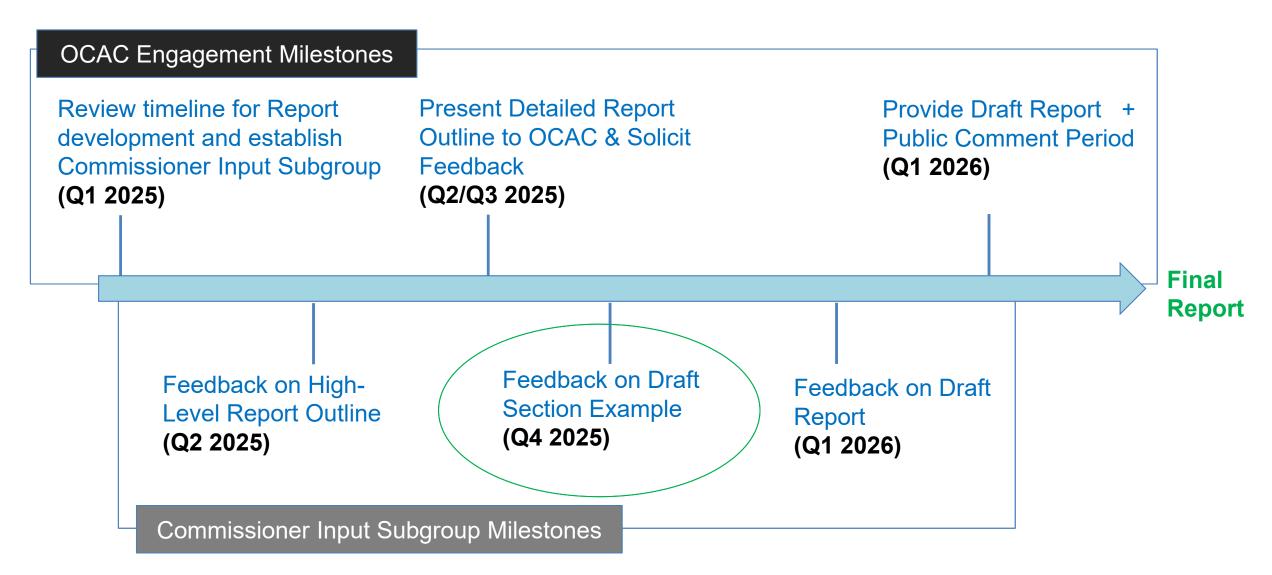


# ITEM 4 WATER CONTROL MANUAL UPDATE

### ITEM 5

## DOWNSTREAM PERSPECTIVE ON WATER CONTROL MANUAL

### ITEM 6


## OCAC AGENDA & TRIANNUAL LEGISLATIVE REPORT UPDATE

### **MEETING 22 AGENDA**

#### **PROPOSED TOPICS**

- 1. Relicensing
- 2. [Pending Availability] City of Oroville levee screening report

## Commission Report 2 Development & Commissioner Input Timeline



#### Report and Content Mandated by SB 955

The commission must publish a report once every three years that provides the following:

- 1. An overview of ongoing maintenance and improvements made at the dam and its site.
- 2. A register of communications received from the department and other parties to the Commission.
- 3. Notice of upcoming plans made by the department for the dam and its site.
- 4. An overview of flood management projects on the Feather River affecting public safety and flood risk reduction.

### ITEM 7

### **PUBLIC COMMENT**

The Oroville Dam Citizens Advisory Commission will now take public comment.

We appreciate your input.

# ITEM 8 ADJOURN

Commission Meeting #22 February 2026